Real-Time Workshop® Embedded Coder™ 5
Module Packaging Features

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Real-Time Workshop® Embedded Coder™ Module Packaging Features
© COPYRIGHT 2004-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 4.0 (Release 14)

Revised for Version 4.1 (Release 14SP1)
Revised for Version 4.2 (Release 14SP2)
Revised for Version 4.3 (Release 14SP3)
Revised for Version 4.4 (Release 2006a)
Revised for Version 4.5 (Release 2006b)
Revised for Version 4.6 (Release 2007a)
Revised for Version 5.0 (Release 2007b)
Revised for Version 5.1 (Release 2008a)

Getting Started

What Is MPF? i i, 1-2
When Do I Need to Use MPF? 1-5
MPF General Operations and Specific Overrides 1-6
MPF Settingst iiiiiiiiiiiiinnnnnnns 1-7
Basic Tutorial 1-9
Creating a Data Dictionary fora Model 1-9
Defining All Global Data Objects in a Separate File 1-15
Defining a Specific Global Data Object in Its Own File ... 1-17
Changing Names of Identifiers 1-18
Changing the Organization of a Generated File 1-21
Inserting a Comment into Generated Files 1-23
Selecting the Desired MPF Procedure 1-26

Selecting and Defining Templates

2

Overview of Templates 2-2
Selecting Preexisting Templates 2-5
Modifying Template Options 2-5
Generating Code and Inspecting Files 2-7
Defining Templates 2-8

1 5 - 2-8

vi

Contents

Procedure i
Comparison of a Template and Its Generated File

Managing the Data Dictionary

3

Overview of the Data Dictionary

Creating Simulink® and mpt Data Objects
OVeIVIEW & ittt ettt e e e
Creating Simulink® Data Objects with Data Object

Wizard ... e
Creating mpt Data Objects with Data Object Wizard ..
Comparing Simulink® and mpt Data Objects
Creating Data Objects Based on an External Data

Dictionaryciiiiiiiiiiiiiiiiiii e

Saving and Loading Data Objects

Applying Naming Rules to Identifiers Globally
OVeIVIEW ..ttt e e e e
Specifying Simulink® Data Object Naming Rules
Defining Rules That Change All Signal Names
Defining Rules That Change All Parameter Names
Defining Rules That Change All #defines

Creating User DataTypes
OVeIVIEW & ittt ettt e e e
Registering User Data Types Using sl_customization.m
Example User Data Type Customization Using

sl_customizationm,

Selecting User Data Types for Signals and
Parameters i
Preparing User Data Types and an Example Model
Selecting User Data Types for Simulink® Signals
Selecting User Data Types for Simulink® Parameters

3-5
3-5

3-6
3-13
3-14

3-18

3-21

3-22
3-22
3-23
3-25
3-25
3-26

3-28
3-28
3-29

3-31

3-33
3-33
3-34
3-38

Registering mpt User Object Types 3-41

Introduction i 3-41
Registering mpt User Object Types Using
sl_customization.m 3-41
Example mpt User Object Type Customization Using
sl_customization.m 3-43

Replacing Built-In Data Type Names in Generated

Code ... e e 3-46
Replacing Built-In Data Type Names 3-46
Data Type Replacement Limitations 3-52
Customizing Data Object Wizard User Packages 3-54
Introduction 3-54
Registering Data Object Wizard User Packages Using
sl_customization.m 3-54
Example Data Object Wizard User Package Customization
Using sl_customization.m 3-56

Customizing with Additional Options

q |

Ensuring Delimiter Is Specified for All #Includes 4-2
Adding Custom Comments 4-4
Adding Global Comments 4-6
Introduction 4-6
Using a Simulink® DocBlock to Add a Comment 4-6
Using a Simulink® Annotation to Add a Comment 4-8
Using a Stateflow® Note to Add a Comment 4-9
Using Sorted Notes to Add Comments 4-10

Selecting Persistence Level for Signals and
Parameters i i, 4-12

vii

viii

Contents

Al

Managing File Placement of Data Definitions
and Declarations

5

Overview of Data Placement 5-2
Priorityand Usage i, 5-3
L0 7] 7 = 5-3
Read-Write Priority 5-5
Global Priority0iiiiiiinnn, 5-7

Definition File, Header File, and Ownership Priorities ... 5-9

Ownership Settings 5-10
Memory Section Settings 5-11
Data PlacementRules 5-12
Example Settings i i 5-13
Introduction 5-13
Read-Write Example 5-15
Ownership Example 5-17
Header File Example 5-18
Definition File Example 5-20

Reference Tables

MPF Panes on the Configuration Parameters Dialog

BoOX .. e e e A-2
MPF Template Symbolsand Rules A-10
Introduction i A-10
Template Symbol Groupsc.ciiiiiiina.. A-10
Template Symbols A-13
Rules for Modifying or Creating a Template A-17

mpt Parameter and Signal Properties A-19

Data Placement Rules and Effects A-31
Effects of Ownership Settings A-31
Example Settings and Resulting Generated Files A-32
Data Placement Rules A-34

Index

ix

X Contents

Getting Started

What Is MPF? (p. 1-2)

When Do I Need to Use MPF? (p. 1-5)

MPF General Operations and
Specific Overrides (p. 1-6)

MPF Settings (p. 1-7)

Basic Tutorial (p. 1-9)

Selecting the Desired MPF
Procedure (p. 1-26)

Explains the Real-Time Workshop®
Embedded Coder™ module
packaging features (MPF).

Provides questions to help determine
whether or not you should use MPF.

An overview of the typical tasks you
can perform using module packaging
features.

Identifies settings for all module
packaging features to be available.

Explains how to do basic MPF tasks,
using a simple model.

Identifies the main MPF procedures
that are provided in subsequent
chapters of this guide.

1 Getting Started

What Is MPF?

The Real-Time Workshop® Embedded Coder™ software generates C/C++
code for a Simulink® or Stateflow® model. Module packaging features (MPF)
extend the code customization and formatting controls of the Real-Time
Workshop Embedded Coder software. It allows you to work collaboratively to
develop and deploy large-scale, multimodel control system applications. With
MPF, you can control packaging needs, with the following features:

® Package generated code into a desired number of .c/.cpp and .h files.

¢ Control the internal organization of each generated file by choosing a
MathWorks™ supplied template. Or, if you know TLC (Target Language
Compiler), you can modify a MathWorks supplied template or create a new
template. For example, for readability, your company may have software

standards that define where to place comments and sections of code within
files.

¢ Control whether generated files contain definitions for a model’s global
identifiers. And, if definitions exist, you determine the files in which the
code generator places them. Also, you can specify the generated files where
the code generator places global data (extern) declarations.

In addition, MPF allows you to

® Register user-defined data types.
¢ Customize comments.

¢ Locate variables in target memory where desired.

What |s MPF2

The MPF interface consists of dialog boxes, templates you can define, and the
use of M-scripts for applying these features to your application.

Real-Time Workshop Embedded Coder Features

Generates

- deterministic multirate scheduler ~ Reduces ROM....

- single and multiple instance

- floating-point code
- integer only code

-S-function wrappers

- ASAP 2 data export file Target Memory

- HTML report

Optimizes data initialization

Legacy Code

Production-Ready

/
C «— | Third-Party

Module Packaging Features

A 4

Source Code Software

Dialog boxes, User—define_(y User-defined organization
templates and M-scripts

Module Packaging Features in Code-Generation Process

The term module (in module packaging features) refers to one or more models.
For example, a module might be named Fuel and the model files associated
with it might be named open_loop fuel.mdl and closed loop fuel.mdl.
Thus, "module" captures the fact that many users generate code for a
multimodel system. Using MPF, users generate code for one model at a time.
The term "packaging" refers to the ability to organize files.

When this document refers to a variable, it follows the distinction made in
C/C++ programming texts between declaring and defining. Declaring names
the variable and specifies its type, but does not allocate memory. Defining
names, specifies the type, and allocates memory for the variable. A variable is
declared in one of two ways: by placing an extern statement in a .h file or by
placing the extern statement at the top of the .c/.cpp file that references
that variable. A variable is defined in a .c/.cpp file.

1 Getting Started

Note Module packaging features include various MPT constructs. MPT
stands for module packaging tool. MPT constructs include the mpt package,
the mpt.Signal and mpt.Parameter classes, user-defined classes based

on mpt classes, and data objects that instantiate mpt classes. For more
information about MPT constructs, see “Creating Simulink® and mpt Data
Objects” on page 3-5, “Registering mpt User Object Types” on page 3-41, and
“mpt Parameter and Signal Properties” on page A-19.

When Do | Need to Use MPF2

When Do | Need to Use MPF?

The Real-Time Workshop® software is the foundation for Simulink® model
code generation. It generates ANSI®/ISO®? C compliant code for an entire
model or for an individual subsystem. The code runs on any microprocessor
or real-time operating system. Real-Time Workshop® Embedded Coder™
software extends Real-Time Workshop software. It generates C/C++ code
from Simulink and Stateflow® models that has the clarity and efficiency

of professional handwritten code. This code is compact in size and fast in
execution time, meeting the needs of embedded systems, on-target rapid
prototyping boards, microprocessors used in mass production, and real-time
simulators. MPF extends the code customization and formatting controls of
the Real-Time Workshop Embedded Coder software.

Use MPF if you answer yes to any question like the following:

® Do you need to control the organization of one or more generated files?

® Do you need to control where (which file) the code generator places
definitions of global identifiers?

® Do you need to insert any kind of comment into a generated file?

® Do you need to control how model parameters and signals are named in
generated files?

1. ANSIis a registered trademark of the American National Standards Institute, Inc.

2. ISO is a registered trademark of the International Organization for Standardization.

1 Getting Started

MPF General Operations and Specific Overrides

Create
Data
Dictionary

The figure below shows an overview of some of the typical tasks you can
perform using module packaging features. First, you can create a data
dictionary for a model. The data dictionary consists of data objects that are
created from a model’s signals, parameters, data stores, and states. You can
apply one of more module packaging features to all of these data objects in
one general operation. You can also override a general operation for specific
data objects.

Some General MPF ' Some Specific MPF
Operations on All Data Objects Operations on Single Data Objects

v

Place global data objects in separate file. Place a global data object in its own file.

Insert custom and global comments. Override naming rules with alias.

A

Change names of data objects
(naming rules).

Organize files with templates.

MPF Settings

MPF Settings

To enable module packaging features, the Configuration Parameters dialog
box must have the settings indicated in the table below:

MPF Settings

Setting on Configuration
Parameters Dialog Box

Purpose

Select Fixed-step in the Type field
of the Solver pane.

Allows you to choose one of the
set of Simulink® fixed-step solvers:
discrete or continuous. Required
to enable any module packaging
feature.

Select the Inline parameters check
box on the Optimization pane.

Instructs the Real-Time Workshop®
build process to embed the numerical
values of model parameters
(constants), instead of symbolic
parameter names, in the generated
code. This improves code efficiency,
because the constants become
nontunable. Then, you can specify
individual parameters to be tunable,
if desired. Preferred for MPF.

Select an ert.tlc (or a system
target file derived from an ert.tlc)
in the System target file field on
the general Real-time Workshop
pane.

Sets code generation parameters for
your embedded target. (The Target
Language Compiler generates
target-specific C/C++ code from

an intermediate description of
your Simulink block diagram
(model.rtw). The system target
file, at the top level of this program,
controls the code generation
process.) Required to enable any
module packaging feature.

1 Getting Started

1-8

MPF Settings (Continued)

Setting on Configuration
Parameters Dialog Box

Purpose

Clear the Ignore custom storage
classes check box.

Supports all custom storage classes.
Required to enable any module
packaging feature.

Select the Include comments
check box on the Comments pane,
and click the Apply button, if it is
available.

Makes available all other options on
the Comments pane. Required to
enable the adding custom comments
feature of MPF.

Basic Tutorial

Basic Tutorial

In this section...

“Creating a Data Dictionary for a Model” on page 1-9

“Changing Names of Identifiers” on page 1-18

“Defining All Global Data Objects in a Separate File” on page 1-15
“Defining a Specific Global Data Object in Its Own File” on page 1-17

“Changing the Organization of a Generated File” on page 1-21

“Inserting a Comment into Generated Files” on page 1-23

Creating a Data Dictionary for a Model

In this procedure, you create a data dictionary for a model using Data

Object Wizard, inspect the data dictionary, and generate code. Definitions

for the data objects in the dictionary are generated into the model source

file (model.c).

Using Data Object

1 Open the demo model rtwdemo_mpTf by clicking the link or by typing

Wizard

rtwdemo_mpf in the MATLAB® Command Window.

Elrtwdemo_mpf *

File Edit View Simulation Format Took Help

[_[Ofx]

DSEH&E s8R 2> sfu |we -] Habss BB

out
in %ngj
g 2

Chart

Goto

Triggen)

e =

Data Store

Ready

Merge

Invoke Data
Ohject Wizard
{Double click.)

|[FixedstepDiscrete

Invoke Model Explorer
{Double click.y
]

Final

1 Getting Started

In this model,
® A, B, and C are input signals, and L and Final are output signals.

® Subsystem1 receives inputs A and E, and contains constants G1 and G2.
Signal E is an output from Data Store Read1.

® Subsystem?2 receives inputs C and D. Signal D is an output from Data
Store Read2. There is a constant in Subsystem2 named G3. Also, this
subsystem has a Unit Delay block whose state name is SS.

2 Double-click the Stateflow® chart and notice it has constants F1, Gainf,
and Gain2, as shown below:

) Stateflow {chart) rtwdemo_mpf/Chart i =]]
Fil= Edit Yiew Simulation Tools Add Help £

!I =

[intEl = 14]

{

out =in * Gain1 * Gain2;
g 1

}

b

4 L

‘Ready

3 Change to a work directory that is not on an installation path and save the
model in that work directory. The Real-Time Workshop® software does not
allow you to generate code from an installation directory.

4 Double-click the Invoke Data Object Wizard button on the model. Or,
type dataobjectwizard('rtwdemo_mpf') in the MATLAB® Command

1-10

Basic Tutorial

Window. Data Object Wizard opens and rtwdemo_mpf appears in the
Model name field, as shown below.

) Data Object Wizard =10 x|

Analyzes the model specified below and finds its unresolved data
ohjects and data types that will be created

| Object Hame | Class | Package

Crieek Al | irereei A
Choose package for selected data objects: |Simu|ink >, I Apply Packane |

|M0delname: hwdemo_mpf Erowze. . |

Find options
’7|7 Root inputs [V States [Block outputs [Alias types

[V Root outputs [V Data stores [V Parameters

Firel | Createl Cancell Help I

5 Click Find on Data Object Wizard. After a moment, the model’s parameters
and signals appear in Data Object Wizard. These "data objects" make up
the data dictionary.

6 Click Check All, to select all data objects for the data dictionary.

7 In the Choose package for selected objects field, select mpt. For an
explanation of “package,” see “Overview of the Data Dictionary” on page 3-3.

1-11

1 Getting Started

8 Click Apply Package. Data Object Wizard associates the selected data
objects with the mpt package, as shown below.

) Data Dbject Wizard]
Unresolved data objects and data types found in analyzed rmodel
Select each data ohject and data type you wish to create for the
model: rwdemo_mpt

| Object Hame | Class | Package
s Sighal it
=] Sigral it
Wlc Signal mpt
D Signal mpt
Wos Signal mpt
¥|E Sighal it
[+ Finsl Sighal it
WL Signal mpt
55 Signal mpt
¥ F1 Parameter it
¥ Parateter tipt
WGz Parammeter it
I e Parameter trpt
v || Gair Paratmeter it
[+ Gain2 Parameter gt

Check Al I Uncheck &l

Choose package for selected data objects: Impt - I i
Model name: hwdemo_mpf Erowwze |

Find options
’7|7 Root inputs [V States [Block outputs ¥ Alias types

[V Roct outputs [V Data stores [V Parameters

Firel | Createl Cancell Help I

1-12

Basic Tutorial

9 Click Create. Data Object Wizard creates a data dictionary, consisting of
data objects for the selected parameters and signals. Data Object Wizard
removes the objects from its object view. Also, the objects are added to the
MATLAB workspace, as shown below.

|‘Wnrkspace [x
HEEERIDN BT |
MName £ |\-’alue |Min |Max I
A <1x1 mpt.Signal>

6B <1x1 mpt. Signal=

Cue <1x1 mpt.Signal>

@D <1x1 mpt.Signal>

&) DS <1x%1 mpt.Signal=

@ E <1x1 mpt.Signal>

D F1 <1x1 mpt.Parameter=

&) Final <1x%1 mpt.Signal=

) G1 <1x1 mpt.Parameters

i G2 <1x1 mpt.Parameter=

ﬁ G3 <1x%1 mpt.Parameter=

&) Gaint <1x1 mpt.Parameter=

&) Gain2 <1x1 mpt.Parameter>

0L <1x%1 mpt.Signal=

i) ss <1x1 mpt.Signal=>

b Ans ‘e works'

10 Close Data Object Wizard.

Inspect the Data Dictionary

You can verify that each data object you selected in Data Object Wizard is in
the data dictionary, using the Model Explorer:

1 Open the Model Explorer.

2 In the left pane, select Base Workspace. Notice that all data objects that
you placed in the data dictionary appear in the middle pane.

1-13

1 Getting Started

1-14

3 In the middle pane, select data objects one at a time, and notice their

property values in the right pane. The figure below shows this for signal A.
All of the data objects have default property values. Note that for an mpt
data object, the default in the Storage class field is Global (Custom). For

descriptions of the properties on the Model Explorer, see Parameter and
Signal Property Values on page A-20.

& Model Explorer =10 x|
File Edit View Tools Add Help
D& s m@X[BH<EH7 f oo Dn 4Rk A
H Search: |by Name ;I Mame: |\ Search
Model Hierarchy ICuntEnIsuF: Base Workspace mpt.Signak: A
- ESlsimuink Raat Data type: [auto = -
E- i Base Workspace [[name [pataype [value |
Wlrtwdemo_mpf 1 auto 2 Dimensions: |-1 Complexity: Iautn -
2T 2 Sample time: |—1 Sample mode: Iauhj -
auto -3
suto 6 Minimum: -Inf Maximum: Inf
s 26 Inital value: [Units: [
auto 9 Cod 5 "
e —Code generation option:
auto Storage dass: [Global (Custom) =]
auto Custom attribute:
auto
auto Memary section: |Dafault j
auto Header file: |
auto Owner: [
S Definition file: |
auto
Persistence level: [1
Aliss: |
Description:
ol i
1| |_>| Contents Search Results IS Help Aoy

Y

Generate and Inspect Code

1 In the left pane of the Model Explorer, expand the rtwdemo_mpf node.
2 In the left pane, click Configuration (Active).

3 In the center pane, click Real-Time Workshop. The active Real-Time
Workshop configuration parameters appear in the right pane.

4 Click the Report tab.

5 In the Report tab, select Create code generation report

Basic Tutorial

6 Select the General tab. Select Generate code only, and then click
Generate code. After a few moments, the names of the generated files are
listed on the Real-Time Workshop Report, as shown below.

E Real-Time Workshop Report =1al =]
Back Forward

Code Generation Report for
Sommary rtwdemo_mpf

Traceability Report
Subsvstem Report
Generated Source Summaw
Files
ert_main.c Real-Time Workshop code generated for Simulink model "rtwdemo_mpf.mdl”.
rtwdemao mpf.c
rtwdemo mpfh Model Version 1 1.86

rtwdemo mpf private.h Real-Time Workshop version : 7.1 (R20083) 23-1an-2008
rtwdemo mpf tvpes.h C source code generated on: Fri Feb 01 15:27:44 2008
rwbvpesh Configuration Settings at the Time of Code Generation : click to open

o | cocd | mep | sy |

7 Open and inspect the content of the model source file rtwdemo_mpf.c. The
following data objects in the data dictionary are initialized in this file.

real_ T F1 = 2.
real T G1 = 6.0;
real_ T G2 = -2.6;
real T G3 = 9.0;
real T Gain1l = 5.0;
real T Gain2 = -3.0;

0;
0

Defining All Global Data Objects in a Separate File

The previous procedure placed all of the model’s data objects in the model
source file. Now you place all of the global data objects in a file separate
from the model source file:

1 In the center pane of the Model Explorer, select Real-Time Workshop.
2 In the right pane, select the Data Placement tab.

3 Set Data definition to Data defined in single separate source
file and accept the default for Data definition filename, global.c.

1-15

1 Getting Started

Real-Time Workshop
‘bug I Interface I Code Style I Templates Data Placement Data Type Replacement |4| 3

—Global data placement {custom storage dasses only)

Data definition: IData defined in a single separate source file ;I
Data definition filename: |g\0bal

Data dedaration: IAulD j
#indude file delimiter: IAubD j

—Global data placement (MPT data objects only)

Module naming: INDt spedified - I
Signal display level: I 10 Parameter tune Ievel:l 10

¥ Generate code only Generate code

J Revert | Help | Apply |

4 Set Data declaration to Data declared in a single separate header
file and accept the default for Data declaration filename, global.h.
Then, click Apply.

5 Click Generate code. Notice that the code generation report lists
global.c and global.h files.

6 Inspect the code generation report. Notice that

® The data objects formerly initialized in rtwdemo_mpf.c now are
initialized in global.c.

¢ The file rtwdemo_mpf.c includes rtwdemo_mpf.h.

® The file rtwdemo_mpf.h includes global.h.

1-16

Basic Tutorial

Defining a Specific Global Data Object in Its Own File

The previous procedure placed all global data objects in a separate definition
file, in one operation. You named that file global.c. (You named the
corresponding declaration file global.h.) MPF allows you to override this and
place a specific data object in its own definition file. In this procedure, you
move the Final signal to a file called finalsig.c, and keep all the other data
objects defined in global.c:

Right Most Pane of Model Explorer Dialog

mpt.Signal Final

Generate
Code

Definition| E—

global.c

real T A =

global.h

extern
extern
extern
extern
extern
extern

real T A;
real T B;
real T C;
real T D;
real T DS;
real T E;

real T F1
real T G1
real T G2
real T G3 = ;
real T Gaini = 0.0;
real T Gain2 = 0.0

1
_ A a0 0 -

\ 4

finalsig.c

real T Final = 0.0;

{extern

real T Final; |

extern
extern
extern
extern
extern
extern
extern
extern

real T L;
real T SS;
real T F1;
real T Gi;
real T G2;
real T G3;
real T Gaini;
real T Gain2;

finalsig.h

A 4

extern real T Final;

1 In the Model Explorer, display the base workspace and select the Final
signal object. The mpt.Signal properties appear in the right pane.

2 In the Code generation options section, type finalsig.c in the
Definition file text box, and click Apply.

3 Display the active Real-Time Workshop configuration parameters.

4 In the right pane, click Generate code. The code generation report still

lists global.c and global.h, but adds finalsig.c.

1-17

1 Getting Started

1-18

5 Open all four files to inspect them. Notice that the Final signal is defined

in finalsig.c. All other data objects in the dictionary are defined in
global.c.

Changing Names of Identifiers

This procedure changes the names of all signal identifiers, except one, so that
they are spelled with all lowercase letters. For example, A in the definition
statement located in global.c is changed to a. The one exception is the
Final signal in the finalsig.c file. You change this identifier name to

Final Signal. The names of the rest of the identifiers in the generated files
remain the same:

1 In the center pane of the Model Explorer, click Real-Time Workshop.
2 In the right pane, click the Symbols tab.

3 In the Simulink data object naming rules section, set Signal naming
to Force lower case, and click Apply.

Basic Tutorial

Real-Time Workshop

General Report | Comments Symbols Custom Code Debug Interface I Cc 4| »
— Auto-generated identifier naming rules

—Identifier format control

Global variables: I rthEM
Global types: | SMEM
Field name of global types: | ShsM
Subsystem methods: I SMNSMSF

Local temparary variables: I SMEM
Lacal block output variables: I rtb_sMEM

Constant macros: EED

Minimum mangle length: I 1

Maximum identifier length: | 31

Generate scalar inlined parameters as: IL\beraIs j

—Simulink data object naming rul

Signal naming: IFUrcE lower case j
Parameter naming: INone j
#define naming: INone ;I

¥ Generate code only Generate code

J Revert | Help | Apply |

4 Display the base workspace and select Final.

5 In the right pane, type Final Signal in the Alias text box, then click
Apply.

1-19

1 Getting Started

1-20

5 Model Explorer

Fle Edit View Toos Add Help

D@y mex|BHEw5R0foe modr|[zaza

|| seareh: [by rame =] hame: | Search
Model Hierarchy Contents of: Base Warkspace mpt.Signal: Final
=+ ffsimuiink Root Data type: [auto = -
"~ i Base Workspace [pataType [value [Dime
- Brtwdemo_mpf* auto 2 Dimensions: [-1 Complexity: [auto =
fsviodel warkspace EIL) e sample time: [-1 sample made: [zuto =
~&gConfiguration {Active) auto 3
Code for rtwdemo_mpf auto 5 Minimumz [-Inf Maximum: [Inf
% Advice for rtwdemo_mpf auto 2.6 i e | e [
~[FlBuid ERT1 auto a s
~ Schart auto -1 i
[H]pata Object wizard auto -1 Storage dass: [Global (Custom) |
~F2lsubsystem1 auto 1 Custom attributes
~[Fofsubsystem2 aute -1
auto 4 Memary section: |Default |
auto 4 Header fie:
auto = Cwner:
auto -1 Definition file: [finalsig.c
auto 1
Persistence level: [1
Alias: Final_Signal
Description:
T I i
4 | #| contents | SearchResuits | Revert el anply
VA

global.h appear with lowercase letters.

real T F1 =
real T G1 =
real T G2 =
real T G3 =
real T Gaintl =

- a a0
o O oo

O O --
o o

real T Gain2 = ;
real T a;
real T b;
real T c;
real T d;
real T ds;
real T e;
real T 1;
real T ss;

6 Display the active Real-Time Workshop configuration parameters.

7 Click Generate code. Now the signal identifiers in global.c and

Basic Tutorial

The statement defining the Final signal in finalsig.c looks like this:

real T Final_Signal;

The statement declaring this identifier in finalsig.h looks like this:

extern real_T Final_Signal;

Changing the Organization of a Generated File

The files you generated in the previous procedures are organized according
to the general Real-Time Workshop® Embedded Coder™ template. This
template has the filename ert_code template.cgt, and is specified by
default in templates panes of the Configuration Parameters dialog box.

Real-Time Workshop
Comments | Symbals I Custom Code Debug Interface I Code Style Templates |1|>

—Code templ,
Source file (*.c) template: Iert_code_bemplate.cgt Browse... Edit...
Header file (*.h) template: IErt_cUdE_tEmpIatE.cgt Browse... Edit...
—Data templ
Source file (*.c) template: Iert_code_bemplate.cgt Browse... Edit...
Header file (*.h) template: Iert_code_bemplate.cgt Browse... Edit...
—Custom templ
File customization template: Iexample_ﬁlejrocess.ﬂc Browse. .. | Edit... |
¥ Generate an example main program
Target operating system: IBareBoardExampIe ;I

¥ Generate code only Generate code

J Revert Help | Apply |

1-21

1 Getting Started

The following fragment shows the rtwdemo_mpf.c file header that is
generated using this default template:

/*
* File: rtwdemo_mpf.c

* Real-Time Workshop code generated for Simulink model rtwdemo_mpf.

* Model version 1 1.86

* Real-Time Workshop file version : 7.1 (R2008a) 23-Jan-2008
* Real-Time Workshop file generated on : Fri Feb 01 16:27:14 2008

* TLC version 1 7.1 (Jan 18 2008)

* C/C++ source code generated on : Fri Feb 01 16:27:14 2008

*/

You can change the organization of generated files using code templates and
data templates. Code templates organize the files that contain functions,
primarily. Data templates organize the files that contain identifiers. In this
procedure, you organize the generated files using the supplied MPF code
template and data template:

1 Display the active Real-Time Workshop Templates configuration
parameters.

2 In the Code templates section of the Templates pane, type
code_c_template.cgt into the Source file (*.c) templates text box.

3 Type code_h_template.cgt into the Header file (*.h) templates text box.

4 In the Data templates section, type data_c_template.cgt into the
Source file (*.c) templates text box.

5 Type data_h_template.cgt into the Header file (*.h) templates text
box, and click Apply.

1-22

Basic Tutorial

6 Click Generate code. Now the files are organized using the templates you
specified. For example, the rtwdemo_mpf . c file header now is organized
like this:

[**

e

* %k

* %k

* %k

* %

* %k

* %k

* %k

* %k

* %k

* %k

* %k

* %k

* %k

* %k

* %k

* %k

* %k

* %k

* %

* %k

* %

* %k

FILE INFORMATION:
Filename: rtwdemo_mpf.c
File Creation Date: 01-Feb-2008

ABSTRACT :

NOTES:

MODEL INFORMATION:

Model Name: rtwdemo_mpf

Model Description: Data packaging examples

Model Version: 1.86

Model Author: The MathWorks Inc. - Mon Mar 01 11:23:00 2004

MODIFICATION HISTORY:
Model at Code Generation: username - Fri Feb 01 16:47:16 2008

Last Saved Modification: wusername - Fri Feb 01 15:23:20 2008

e X

*% [

Inserting a Comment into Generated Files

MPF provides a variety of ways to enter comments in the generated files, as
explained in Chapter 4, “Customizing with Additional Options”. In this final
step of the basic tutorial, you place a Simulink® annotation on the model so
that it also appears as a comment in the "NOTES" section of a generated file.

Recall the templates that you specified in the previous procedure. Below is a
list of generated files and templates used to organize them:

1-23

1 Getting Started

Generated File Template Used

finalsig.c data_c_template.cgt
global.c data_c_template.cgt
rtwdemo_mpf.c code_c_template.cgt
global.h data_h_template.cgt
rtwdemo_mpf.h code_h_template.cgt

Of the templates you used, only the code_c_template.cgt file has the
<%Notes> template symbol, as shown in the file fragment below:

/**

R EEE RS S SRR EEEEEEEEEE RS EE R R SRR RS RS EEER SR EEEEEERREEEREREREEEEREEEEEEEESEES]
** FILE INFORMATION:

** Filename: %<FileName>
** File Creation Date: %<Date>

* *

** ABSTRACT:

** S%<Abstract>

**

** NOTES:

** %<Notes>

* *

** MODEL INFORMATION:

** Model Name: %<ModelName>

This template was used to organize rtwdemo_mpf.c. So the annotation you are
about to add using the <%Notes> template symbol will appear in this file only.

1-24

Basic Tutorial

1 Double-click the unoccupied area on the model where you want to place the
annotation, and type the following, as shown in the figure below:

<S:Notes>This is the annotation I want under NOTES.

E!rtwdemo_mpf [_ O]]
File Edit View Simulation Format Tools Help
DIBEE&|+ER 2y sfn Jum - BHBEd REBET®
-
aut L= 2
- (] -

Mgz — - — -1 Gow In_voke Data

Chart . Object Wi;ard

{Double chick.)

Triggen()
@ A > Invoke Model Explorer
(Double click.)y
(e
Gotol Fram1
_ Subsysten <H¥
H M
From ¥ R
Trigger(
CE =
Fromz
K

T <5:Notes> This is the annotation | want under NOTES. L
Subsystemz ;'
Ready [100% [[T=0.00 |[FixedstepDiscrate 4

2 Click outside the annotation rectangle and save the model.

3 Generate code. The annotation appears under NOTES, in rtwdemo_mpf.c:

[**

o

* %k

* %k

* %k

* %k

* %

* %k

* %k

* %k

* %k

* %k

* %k

* %k

FILE INFORMATION:

Filename: rtwdemo_mpf.c
File Creation Date: 01-Feb-2008
ABSTRACT:

NOTES:

This is the annotation I want under NOTES.

MODEL INFORMATION:
Model Name: rtwdemo_mpf

1-25

1 Getting Started

Selecting the Desired MPF Procedure

The following chapters document MPF tasks in detail:

Chapter 2, “Selecting and Defining Templates”

Chapter 3, “Managing the Data Dictionary”

Chapter 4, “Customizing with Additional Options”

Chapter 5, “Managing File Placement of Data Definitions and Declarations”

1-26

Selecting and Defining

Templates

Overview of Templates (p. 2-2)

Selecting Preexisting Templates
(p. 2-5)

Defining Templates (p. 2-8)

Explains what a template is.

Explains how to select default
templates or user-defined templates
that already exist.

Explains how to create a new
template or edit an existing
template.

2 Selecting and Defining Templates

Overview of Templates

You can select and define (create) templates so that the code you generate
is organized the way you want. A template defines exactly where all parts
of a generated file’s contents will be placed. Then, when you instruct the
Real-Time Workshop® Embedded Coder™ software to generate code, it will
organize all generated files according to the templates you selected.

The table below lists all of the files that the Real-Time Workshop
Embedded Coder software generates, and the supplied MPF templates
that organize them. The MPF template files are code_c_template.cgt,
code_h_template.cgt, data c_template.cgt, and data h template.cgt.
(The ert_code_template.cgt file is the default Real-Time Workshop
Embedded Coder template. The example file process.tlc file is the
custom template, referenced below.)

Generated Files and Templates That Organize Them

example_

ert code | code ¢ |code h_ |data c. | data h_ | file_
Generated template.| template, template. template. | template.| process.
File cgt cgt cgt cgt cgt tlc
your_code.c file or b:4 X X
files
your_code.h file X X b
your_data.c file X X b
your_data.h file X X X

Template files are grouped into three types: code, data, and custom.

A code template organizes all of the generated files that, primarily, contain
functions but not identifiers. The source code template organizes C/C++ code
files. These include, for example, the main .c or any of the .c files that
contain functions that the Real-Time Workshop Embedded Coder software
generates for the open model.

Overview of Templates

The quantity and filenames of these .c files are based on the function
partitioning selected for the model. See “Nonvirtual Subsystem Code
Generation” in the Real-Time Workshop® documentation and “Generated
Code Modules” in the Real-Time Workshop Embedded Coder documentation.

There will always be at least one .c file generated that contains the model’s
functions. The code generator uses the source code template that you select
to organize all of the function .c files, regardless of how many there are for
this model. The header code template, on the other hand, organizes the .h
file that includes the prototypes of these functions.

A data template organizes all of the generated files that contain only
identifiers (data), not functions (code). The source data template organizes
the .c file that contains definitions of variables of global scope. The header
data template organizes the .h file that can contain declarations to those
definitions.

A custom template is a TLC callback script that allows you to customize
generated code. A custom template lets you
® Generate virtually any type of source (.c) or header (.h) file.

® Organize generated code into sections (such as #include preprocessor
directives, typedef statements, functions, and more).

® Generate code to call model functions such as model_initialize and
model_step.

® Generate code to read and write model inputs and outputs.

® Generate a main program module.

® Obtain information about the model and the files being generated from it.
The supplied (default) code template is example file process.tlc. You
must uncomment a TLC line, as explained near the top of the file, to apply

the script to generated code. You can modify example file process.tlc
to create your own custom template.

2 Selecting and Defining Templates

The chapter has two main subprocedures:

® “Selecting Preexisting Templates” on page 2-5 describes how to select
preexisting code and data templates.

® “Defining Templates” on page 2-8 describes how to create your own code or
data templates.

For details describing the custom template, see the discussion of “Custom File
Processing (CFP) Template Structure” in the Real-Time Workshop Embedded
Coder documentation.

Selecting Preexisting Templates

Selecting Preexisting Templates

In this section...

“Modifying Template Options” on page 2-5

“Generating Code and Inspecting Files” on page 2-7

Modifying Template Options

To modify template options:

1 Select the Real-Time Workshop > Templates pane on Configuration
Parameters dialog box . The fields on that pane allow you to specify
template files that the Real-Time Workshop® Embedded Coder™ software
uses to organize generated .c/.cpp and .h files.

Real-Time Workshop
Comments | Symbols | Custom Code | Debug | Interface | Code Style Templates |1|>

—Code templ,
Source file (*.c) template: |Ert7c0de)emplate.cgt Browse. .. Edit...
Header file (*.h) template: IErt_cnde_tempIatE.cgt Browse. .. Edit...
—Data temr
Source file (*.c) template: Iert_code_bemplate.cgt Browse... Edit...
Header file (*.h) template: Iert_code_bemplate.cgt Browse... Edit...
—Custom templ
File customization template: |example_ﬁle43rocess.ﬂc Browse. .. | Edit... |
V' Generate an example main program
Target operating system: IBareBoardExampIe j

I™ Generate code only

J Revert

2-5

2 Selecting and Defining Templates

2-6

For descriptions of individual fields, see “Configuration Parameters” in the
Real-Time Workshop Embedded Coder reference documentation.

Note The default MPF templates are located in
matlabroot/toolbox/rtw/targets/ecoder. User-modified template

files must be located in the current MATLAB® working directory or in
the MATLAB path.

2 In the Source file (*.c) template field of the Code templates pane, enter
the desired filename. The Real-Time Workshop Embedded Coder software
uses this file to organize the .c/.cpp file or files that contain the source
code for the model’s functions.

3 In the Header file (*.h) template field of the Code templates pane,
enter the desired filename. The Real-Time Workshop Embedded Coder
software uses this file to organize the .h header file that contains the
model’s function prototypes.

4 In the Source file (*.c) template field of the Data templates pane, enter
the desired filename. The Real-Time Workshop Embedded Coder software
uses this file to organize the .c/.cpp file that contains the definitions
of variables of global scope.

5 In the Header file (*.h) template field of the Data templates pane, enter
the desired filename. The Real-Time Workshop Embedded Coder software
uses this file to organize the .h file that contains declaration statements
(extern, typedef, #define).

If you want to use a custom template, follow the “Custom File Processing”
instructions in the Real-Time Workshop Embedded Coder documentation.
Otherwise, proceed to the next step.

6 Click Apply to save all your choices on the pane and keep it open. (Clicking
OK saves the choices but closes the pane.)

Selecting Preexisting Templates

Generating Code and Inspecting Files

You have selected the desired templates. Now you can generate code and
inspect the files to ensure they are what you want:

1 In the Configuration Parameters dialog box, click Real-Time
Workshop > Report on the left pane.

2 Select the Create code generation report check box.

When you select the Create code generation report check box,
Real-Time Workshop Embedded Coder software automatically selects
two check boxes on the pane: Code-to-model and Launch report
automatically. For large models, you may find that HTML report
generation takes longer than you want, after performing step 4 below. In
this case, consider clearing the Code-to-model check box. The report will
be generated faster.

3 In the Real-Time Workshop pane, select the Generate code only check
box. The Build button changes to Generate code.

The generate code process generates the .c and .h files. The build process
adds compiling and linking to generate the executable. For details on
building, see “Build Process” in the Real-Time Workshop® documentation.

4 Click the Generate code button. After a moment, the Real-Time
Workshop Embedded Coder software creates all files according to the
Simulink® partitioning for the model. It organizes each file according to the
respective template you have chosen. The HTML report appears, listing
the generated files on the left pane (under Generated Source Files).

5 To inspect a file, click its filename on this window.

6 If you want a file to be organized using a different existing template, close
the file, and repeat the relevant steps in “Selecting Preexisting Templates”
on page 2-5.

7 If you want to change a template, or create a new one, close the file, and
follow “Defining Templates” on page 2-8.

2 Selecting and Defining Templates

Defining Templates

In this section...

“Tips” on page 2-8
“Procedure” on page 2-8

“Comparison of a Template and Its Generated File” on page 2-10

Tips

® When creating a template, modify the supplied template and save it with

a new filename.

¢ When naming a template, use the file extension .cgt (code generation

template).

¢ The default path for a template file is toolbox/rtw/targets/ecoder.

¢ For the code generator to find a filename that you specify in a field on the

Templates pane of the Configuration Parameters dialog, the file must be in
the current MATLAB® work directory or on the MATLAB path.

¢ For an example that compares a template with its associated generated file,

see “Comparison of a Template and Its Generated File” on page 2-10.

Procedure

To create a new template or edit an existing template,

1 Open the Configuration Parameters dialog box and select Templates on

the left pane. The Templates pane now appears on the right, like that
shown in the section “Overview of Templates” on page 2-2.

Each Stateflow® or Simulink® model can have up to five types of templates
from which .c or .h files are generated. These templates are accessible
on this pane. Generated Files and Templates That Organize Them on
page 2-2, identifies all the files that the Real-Time Workshop® Embedded
Coder™ software generates and the supplied templates that organize each
file. MPF Elements on Configuration Parameters Panes on page A-2,
describes the supplied code templates and data templates.

Defining Templates

2 To edit a code or data template, first type its filename in the desired
template field on the Templates pane, or select it using the Browse
button. Then click Edit. The file opens in an editor.

The location of a template symbol in one of the MPF template files
identified in Generated Files and Templates That Organize Them on page
2-2 determines where the items associated with the symbols are located
in the generated file, according to certain rules.

3 Modify (edit) the template file as desired, while consulting the following:
e “Template Symbol Groups” on page A-10
e “Template Symbols” on page A-13
e “Rules for Modifying or Creating a Template” on page A-17

4 Perform a Save or Save As operation, naming the template file as desired.
Performing a Save operation on an existing template file will replace
the original. This is desirable if your intent is to update an existing
user-defined template. If you are modifying a supplied template, perform
a Save As operation, not a Save.

5 Follow “Selecting Preexisting Templates” on page 2-5, selecting the
template you just defined.

6 Click Generate Code.
7 Inspect the generated file or files to see how the template organized them.

8 Repeat this procedure only if the organization of the generated file or files
is not acceptable.

Note Practice is the best way to learn how a user-defined template affects
the organization of a generated file. Create a template. Generate code.
Compare the two. Repeat this process to see the results that changes on
the template have on its respective generated file or files.

2 Selecting and Defining Templates

Comparison of a Template and lts Generated File

The next figure shows part of a user-modified MPF template and the resulting
Real-Time Workshop Embedded Coder generated code. This figure illustrates
how you can use a template to

¢ Define what code the Real-Time Workshop Embedded Coder software
should add to the generated file

¢ Control the location of code in the file

¢ Optionally insert comments in the generated file

Notice %<Includes>, for example, on the template. The term Includes is a

symbol name. A percent sign and brackets (%< >) must enclose every symbol

name. You can add the desired symbol name (within the %< > delimiter) at a

particular location in the template. This is how you control where the code
generator places an item in the generated file.

2-10

Defining Templates

Template and Generated File

Portion of
Example Template Corresponding Portion of Generated File
[*#INCLUDES*/ (1)> 26 /*#INCLUDES*/
R : " "
%<Includes> 27 #include "rtwdemo_codetemplate.h

["#DEFINES™/ (2)> None 28 #include "rtwdemo_codetemplate_private.h"
%<Defines> \ 29 .
#pragma string1 (3) 30 /*#DEFINES*/

BEFINITIONS(4)> = 31 forsane st
%<Definitions> 33 /* Block states (auto storage) */
#pragma string2 (5) 34 rtDWork:
%<Declarations> (6) 35
%<Functions> (7) 36 /* External output (fed by signals with auto storage) */

37 rty;

38

39 /* Real-time model */

40 rtM_;

— 41 *rtM = &rtM_;
42 #pragma string2
43
None 44 /* Model step function */
32 }/oid rtwdemo_codetemplate_step(void)

47
48 /* local block i/o variables */

50 rtb_Switch;

51 rtb_RelOpt;

52

53 /* Sum: " incorporates:
54 * UnitDelay: "

55 */

56 rtb_Switch = ()(()rtDWork.X + 1U);
57

58 /* RelationalOperator: " */

59 rtb_RelOpt = (rtb_Switch != 16U);
60

61 /* Outport: " */

62 rtY.Out = rtb_RelOpt;

63

64 /* Switch: " */

65 if(rtb_RelOpt) {

66}e

}else {
67 rtb_Switch = OU;
68}

69

70 /* Update for UnitDelay: " */
71 tDWork.X = rtb_Switch;

72

73 /* (no update code required) */
— 74}

2-11

2 Selecting and Defining Templates

How the Template Affects Code Generation

This part of the template...

Generates in the file...

Line

Description

Explanation

(1) | /*#INCLUDES*/
%<Includes>

26-28

An /*#INCLUDES*/
comment, followed
by #include
statements

The code generator adds

the C/C++ comment as a
header, and then interprets

the %<Includes> template
symbol to list all the necessary
#include statements in the file.
This code is first in this section
of the file because the template
entries are first.

(2) | /*DEFINES*/
%<Defines>

30

A */DEFINES*/
comment, but no
#define statements

Next, the code generator places
the comment as a header for
#define statements, but the file
does not need #define. No code
is added.

(8) | #pragma stringi

31

(5) | #pragma string2

42

#pragma statements

While the code generator
requires %<> delimiters for
template symbols, it can also
interpret C/C++ statements in
the template without delimiters.
In this case, the generator adds
the specified statements to the
code, following the order in
which the statements appear in
the template.

4) /#DEFINITIONS*/
%<Definitions>

32-41

/*#DEFINITIONS*/
comment, followed
by definitions

The code generator places

the comment and definitions
needed in the file between the
#pragma statements, according
to the order in the template.
It also inserts comments (lines
33 and 36) that are preset

in the model’s Configuration
Parameters dialog box.

Defining Templates

How the Template Affects Code Generation (Continued)

This part of the template... | Generates in the file... Explanation
Line Description

(6) | %<Declarations> 43 No declarations The file needs no declarations,
so the code generator does not
generate any for this file. The
template has no comment to
provide a header. Line 43 is left
blank.

(7) | %<Functions> 44-74 | Functions Finally, the code generator adds

functions from the model, plus
comments that are preset in
the Configuration Parameters
dialog box. But it adds no
comments as a header for the
functions, because the template
does not have one. This code is
last because the template entry
is last.

For a list of template symbols and the rules for using them, see “Template
Symbol Groups” on page A-10, “Template Symbols” on page A-13, and
“Rules for Modifying or Creating a Template” on page A-17. To set comment
options, from the Simulation menu, select Configuration Parameters.
On the Configuration Parameters dialog box, select the Real-Time
Workshop > Comments pane. For details, see “Configuring Real-Time
Workshop® Code Generation Parameters” in the Real-Time Workshop
documentation.

2-13

2 Selecting and Defining Templates

2-14

Managing the
Dictionary

Data

Overview of the Data Dictionary
(p. 3-3)

Creating Simulink® and mpt Data
Objects (p. 3-5)

Saving and Loading Data Objects
(p. 3-21)

Applying Naming Rules to
Identifiers Globally (p. 3-22)

Creating User Data Types (p. 3-28)

Selecting User Data Types for
Signals and Parameters (p. 3-33)

Describes the data dictionary
created for Simulink® and Stateflow®
models (the "code generation data
dictionary").

Explains how to add Simulink
and mpt data objects to the code
generation data dictionary.

Explains how to save the set of data
objects (and their properties) that
you have created so that you can
load them for subsequent use.

Explains how to change the case
or spelling of all identifier names
according to the same rule, when
code generation occurs.

Explains how to register user-defined
data types so they can be
associated with the corresponding
MathWorks™ C/C++ data types.

Explains how to select registered,
user-defined data types for signals
and parameters.

3 Managing the Data Dictionary

Registering mpt User Object Types
(p. 3-41)

Replacing Built-In Data Type Names
in Generated Code (p. 3-46)

Customizing Data Object Wizard
User Packages (p. 3-54)

Explains how to register one or more
sets of user-defined properties and
property values that can be applied
automatically to user data objects as
desired.

Explains how to replace built-in
data type names with user-defined
replacement data type names in
generated code.

Explains how to register Data
Object Wizard (DOW) user package
customizations.

Overview of the Data Dictionary

Overview of the Data Dictionary

A data dictionary contains all of the parameters and signals that the source
code uses, and a description of their properties. The data dictionary that is
created for Simulink® and Stateflow® models is called the code generation
data dictionary. (You can use the data dictionary for simulation. This does not
require that you have a Real-Time Workshop® Embedded Coder™ license.)
The dictionary is the total number of data objects that appear in the middle
pane of the Model Explorer. These data objects also appear in the MATLAB®
workspace. The procedure described in this chapter allows you to create or
edit the dictionary. The procedure allows you to control property values for
each data object. This, in turn, determines how each parameter and signal is
defined and declared in the automatically generated code.

The values of data object properties can affect where the code generator places
a parameter or signal in the generated file. This is because some property
values are associated with different template symbols. The location of a
symbol in a template determines where the associated parameter or signal is
located in the generated file. For details about templates and symbols, see
Chapter 2, “Selecting and Defining Templates”.

It is helpful to define terms you will see when managing the dictionary,
especially when you view them using the Model Explorer. The Simulink
software uses a hierarchy of terms that are drawn from object-oriented
programming. For details, see “Working with Data Objects” in the Simulink
documentation. The sketch below summarizes this hierarchy.

Package
Class - Class
P P T o T P = Property
PV PV PV PV PV = Property Value

3 Managing the Data Dictionary

Simulink or mpt is the package. Parameter and Signal are two classes in each
of these packages. Each class has a number of properties associated with it.
Sometimes properties are called attributes. Data objects (the parameters

and signals) are the instances of a package.class that make up the data
dictionary. All parameter data objects have a set of properties. All signal
data objects have a different set of properties than that for parameters. For
each data object, each property in the set has its own property value that
must be specified in the dictionary.

Note In this document, "signal" refers to a named wire on a Simulink model,
a discrete state, or a data store.

Creating Simulink® and mpt Data Objects

Creating Simulink® and mpt Data Objects

In this section...

“Overview” on page 3-5

“Creating Simulink® Data Objects with Data Object Wizard” on page 3-6
“Creating mpt Data Objects with Data Object Wizard” on page 3-13
“Comparing Simulink® and mpt Data Objects” on page 3-14

“Creating Data Objects Based on an External Data Dictionary” on page 3-18

Overview

The Real-Time Workshop® Embedded Coder™ software provides the mpt
(module packaging tool) data object, which contains all the properties of
Simulink® data objects plus properties that provide additional control over
module packaging. For a comparison of the properties of Simulink and mpt
data objects, see “Comparing Simulink® and mpt Data Objects” on page 3-14.

There are different ways of creating Simulink and mpt data objects for a
data dictionary.

¢ One-by-one, either using the MATLAB® command line or using the Model
Explorer Add menu and selecting Simulink Parameter, Simulink
Signal, MPT Parameter, or MPT Signal. For more information, see
“Working with Data Objects” in the Simulink documentation.

o All at once, invoking Data Object Wizard for an existing model. For
more information and examples, see Data Object Wizard in the Simulink
documentation and “Creating Simulink® Data Objects with Data Object
Wizard” on page 3-6.

* Creating data objects based on an external data dictionary. You can do
this manually item by item, or all at once automatically using a script.
For more information, see “Creating Data Objects Based on an External
Data Dictionary” on page 3-18.

The following sections illustrate how to create Simulink and mpt data objects
and compares their properties as data types.

3 Managing the Data Dictionary

Creating Simulink® Data Objects with Data Object
Wizard

You can use Data Object Wizard to create data objects for your model (see
Data Object Wizard in the Simulink documentation).

Data Object Wizard is especially useful for creating multiple data objects for

¢ Existing models that do not currently use data objects.

¢ Existing models to which you have added signals or parameters and
therefore you need to create more data objects.

Creating Simulink® Data Obijects
This procedure creates Simulink data objects using Data Object Wizard.

1 Open the model whose data objects you want to be in the data
dictionary. For example, open rtwdemo_mpf.mdl (which is located in
toolbox/rtw/rtwdemos). This model appears as shown below.

E!rtwdemo_mpf gt [_ O] =]

File Edit Wiew Simulation Format Tools Help

out T = 2)
" EE"Q m Invoke Data

trig 2 Object Wizard
Chart {Double click.)

Trigger)

Imvoke Model Explorer

Cox
— {Double click.)
o5]

Data Store
Data Store
irite bysten <H>

m Readi L y
H e | 3
? From X > Final -

Data Store

Memas btz Stare B

Readz - = >
Subsystemz

Ready [to0es |FixedStepDiscrete Y

Creating Simulink® and mpt Data Objects

2 Open Data Object Wizard by entering dataobjectwizard at the MATLAB
command line or by selecting Data Object Wizard from the Tools menu
of your model. The Data Object Wizard dialog box appears, as shown below.

<) Data Object Wizard =10 x|

Analyzes the model specified helow and lists its unresolved data
ohjects and data types that will be created

| Object Hame | Clags | Package

Creclc Al | | nchssic Al
Choose package for selected data objects: ISimuIink d Apply Package
Model name: I Browrse...

Find opticn:
[¥ Rootinputz [States ¥ Block outputs ¥ Alias types
[¥ Root outputs [V Data stores [Parameters

Firdl | Createl Cancell Help |

3 In the Model name field, type the name of the model you opened in step
1 and press the Enter key, or navigate to it using the Browse button.
The Find button becomes available. Notice the check boxes in the Find
options pane.

4 In the Find options pane, select the desired check boxes. For descriptions
of each check box, see Data Object Wizard in the Simulink documentation.

Be sure to check the Alias types option. This finds all user-registered
data types in the s1_customization.m file plus all data type replacements
specified for the model in the Data Type Replacement pane of the
Configuration Parameters dialog box. Data Object Wizard can create
Simulink.AliasType objects from these.

3 Managing the Data Dictionary

3-8

5 Click the Find button. After a moment, a list of all of the model’s potential

data objects appear that are not yet in the code generation data dictionary,
as shown below. This includes all of the model’s signals (root inputs, root
outputs, and block outputs), discrete states, data stores, and parameters,
depending on

® The check boxes you selected in the previous step
¢ The constraint mentioned in the note above
Data Object Wizard finds only those signals, parameters, data stores, and

states whose storage class is set to Auto. The Wizard lists each data store
and discrete state that it finds as a signal class.

6 Click Check All to select all data objects. Notice in the Choose package

for selected data objects field that Simulink, the default, is selected.
So all of the data objects are associated with the Simulink package, as
shown below.

-0 x|
Unresolved data ohjects and data types found in analyzed madel
Select each data object and data type you wish to create for the
model rhwdemo_mpf

<) Data Object Wizard

I Object Hame T Class [Package
1~ Signal Simuink
|edll=3 Signal Simulink
Flc Signal Simulink
|l Signal Simulink
oS Signal Simulink
IV 1E Signal Simulink
I | Final Signal Simulink
L Signal Simulink
Flss Signal Simulink
|1 Parameter Simulink
== Parameter Simulik
72 Parameter Simulink
VG3 Parameter Sirulink
I | Gaint Parameter Simulink
V¥ Gainz Parameter Sirulink

e i"f| Uncheck &l
Choose package for selected data objects: [Simulink - Apply Package
Model et ftwrederns_rpt Browse
Find option:
¥ Roctinputs [Statss [# Block outputs [Aliss types
¥ Roct outputs [Data stores [Parameters
Find Creste Cancel Help

7 Click Create. The data objects are added to the MATLAB workspace, and
they disappear from Data Object Wizard.

Creating Simulink® and mpt Data Objects

8 Click Cancel. The Data Object Wizard dialog box disappears.

Now you can set property values for the data objects.

Setting Property Values for Simulink® Data Objects

Most of the property values of data objects are supplied by defaults. A few
are from the model. Note that for Simulink data objects, the default storage
class is Auto.

1 Type daexplr on the MATLAB command line, and press Enter. The Model
Explorer appears.

2 In the Model Hierarchy (left) pane, select Base Workspace. All of the
Simulink data objects in the code generation data dictionary appear in the
Contents of (middle) pane, as shown below.

D Model Explorer = =0l x|

File Edit ¥ew Tools Add Help

[De/smax[BH=%f 0@ an 4k Anmza

HSealch |by Block Type j Tope: |Ehart j Search
Model Hierarchy Contents of: Base Workspace Base Workspace
E--@Sl_r_nulmk Roaot | DataType | Tlrs I Dherres I ||| The base (MATLAB] workspace contains vamables_lhat are visible to all _Slmulmk models.
R0 oispace - - = ||[These varible can b used o paremeterize certain model, bock aneisignal parsmetes
B twdemo_mpt ::m 1 N
suta -1 &l
auto -1 a,
auto -1 a
auto il a
auto 2 [111 =
auto -1 at,
autn [[111 e,
suta 28 [11] e,
auta 9 1] e
auta 1 1] e
auto 3 111 =
£ L auto -1 at,
R=:11 auto -1 at,
i i ol
Conlents Revert Help Apply

&

3-9

3 Managing the Data Dictionary

3-10

3 To see the properties of a Simulink data object, select a data object in the
middle pane. The right pane displays the property names, as shown below.
(For descriptions of the properties, see Parameter and Signal Property
Values on page A-20.) These property names also appear as column
headings in the middle pane. You have control over the values specified

for these properties.

P& Model Explorer =101
File Edt Wew Tools Add Help
|oelimaxBH%Hf o0 On 4+ anrmz A
HSealch |by Block Type | Tupe |Ehart | Search |
Model Hierarchy | ontents of Base workspace ||gimufink Signal: &
=[E9]Simulck Root Narme DataType | Value | Dimensians | C|| Datatpe: [auto =] bnits
; i Base Workspace Dimensions: |-1 Complexity: | auta 'I
3 tua J
- [Btwcemo_mp =L sut A &) | Sample time:[1 Sample mode: [auto |
EC auto 1 | R Masimum: ~ [ind
€D auto -1 a ;
= D5 auto 4 al Iritial walue:
=E aulo a au| | ~Code generation optio
[:] F1 auta 2 [l e[| Storage class: [Auto =l
- Final auto -1 aL Alias: I
[auta] el
auta 26 [11] | Deseription:
auto 9 ()] e
auto 3 111 e
[1] Gain2 it 31 e
= L auto -1 at,
£ 55 suta -1 &l
: 2
Contents [Search Resuls e ich Al
A

4 For this example, while pressing the Ctrl key, select signal data object A
and parameter data object F1 in the middle pane.

Creating Simulink® and mpt Data Objects

5 In the middle pane, move the scroll bar so that you can see the
StorageClass column, as shown below.

=101

File Edit Wew Tools add Help

[oesmaxBH%Hf fo0 @R +h][awrmza

HSealch |by Block Type j Tope: |Ehart j Search |
Model Hierarchy | ontents of Base workspace Simulink Signal: A

=[] Simuiink Root alue | Dimensions | Complerity | StoragaClass | Min | Max | De|| Datatyps: [auta =] Units:
nEaseWolkspace Dimensions: |-1 Complesity: auto 'I

B tewdema_maf 4 suto Auta Ant - Inf Sample tme:[1 Sample mode: | auta |

1 ado Auo At Inf Minimum: [1F Masimum: ~ [ind
-1 auto At Anf Inf l—
-1 auto At dnf Inf [iitalale:
Kl aulo Auto It Inf r—Code generation optial
[real At Ak Inf Storage dlass [Aulo |
-1 auto Auta Anf Inf Allas: I
[real Auta anf - Inf

B [11] real Auto Ant Inf Description:
ni eal Auta Anf Inf
ni real Auto Anf Inf
[teal Auto anf - Inf
-1 auto Auta Anf Inf
-1 autn Auta Anf Inf

K| et | i

Contents Revert Help Apply

3-11

3 Managing the Data Dictionary

3-12

6 For this example, click one of the rows and select Default (Custom). The
StorageClass property value for the Simulink data object changes from
the default Auto to Default (Custom), as shown below.

D Model Explorer = =0l x|

File Edit Wew Tools add Help

[De/ s max[BH=%Hffo® ands[anmza

HSealch |by Block Type | Tupe |Ehart | Search |
Model Hierarchy | ontents of Base workspace Simulink Signal: A
=+ ESimulink Root e [e [S s Data type: | auin x| Urits
ﬁEase ‘workspace - Anf Dimensiors: |-1 Complesity: auto 'I
3 tua J
i ftucmo_m - suto Auto AnfInE || g ample time:[1 S ample mode: [auto -1
A ado At SO | BV i Masimum: ~ [ind
-1 auto At Anf - Inf
-1 auto At Anf - Inf [iitalale:
1 auta Ao anf Inf r—Code generation optial
[1] teal Auto Anf Inf Storage olass: | Default [Custam] |
-1 auto Auta Anf - Inf Alias: I
1 real Auto Ané Inf
B [11] real At Anf - Inf Description:
ni eal Auta Anf - Inf
ni real Auto Anf - Inf
(L] real Auta Anf - Inf
-1 auto Auta Anf - Inf
-1 autn Auta Ak Inf
Kl | i
Contents [Search Resulls e nfely igel)
A

Generating and Inspecting Code

All data objects for the model are in the code generation data dictionary. You
have specified property values for each data object’s properties as needed.
Now you generate and inspect the source code, to see if it needs correction or
modification. If it does, you can change property values and regenerate the
code until it is what you want.

1 In the Configuration Parameters dialog box, click Real-Time Workshop

in the left pane.

2 In the Report pane, select the Create code generation report check box.

Creating Simulink® and mpt Data Objects

Note When you select the Create code generation report check

box, the Real-Time Workshop Embedded Coder software automatically
selects two check boxes on the pane: Launch report automatically

and Code-to-model. For large models, you may find that HTML report
generation (step 4 below) takes longer than you want. In this case, consider
clearing the Code-to-model check box (and the Model-to-code check box
if selected). The report will be generated faster.

3 In the Real-Time Workshop pane, select the Generate code only check
box. The Build button changes to Generate code.

Note The generate code process generates the .c/.cpp and .h files. The
build process adds compiling and linking to generate the executable.
For details on build, see “Build Process” in the Real-Time Workshop®
documentation.

4 Click the Generate code button. After a moment, the HTML report
appears, listing the generated files on the left pane (under Generated
Source Files).

5 Select and review files in the HTML report.

Creating mpt Data Objects with Data Object Wizard

Create mpt data objects using Data Object Wizard the same way you did for
Simulink data objects, as explained in “Creating Simulink® Data Objects” on
page 3-6, except select mpt as the package instead of Simulink.

Set the property values for the mpt data objects the same way you set them for
Simulink data objects, as explained in “Setting Property Values for Simulink®
Data Objects” on page 3-9, with the following exceptions:

® Accept the default custom storage class for mpt data objects,
Global(Custom)

* For data objects A and F1, type mydefinitionfile in the Definition file
field on the Model Explorer.

3-13

3 Managing the Data Dictionary

3-14

Then generate and inspect the code.

Note The Alias field is related to “Applying Naming Rules to Identifiers
Globally” on page 3-22.

Comparing Simulink® and mpt Data Objects

The mpt data object contains all the properties of Simulink data objects
plus properties that provide additional control over module packaging. The
differences between Simulink and mpt data objects can be illustrated by
comparing

® “Signal and Parameter Properties” on page 3-15

¢ “Configuration Parameters” on page 3-16

® “Generated Code” on page 3-17
Key differences include the following:

¢ Different custom storage classes displayed in the Model Explorer for mpt
data objects provide more control over the appearance of the generated code.

® Additional custom attributes (owner, definition file, persistence level,
memory section) for mpt data objects provide more control over data
packaging in the generated code.

¢ On the Comments pane of the Configuration Parameters dialog box,
the Custom comments (MPT objects only) option allows you to add a
comment just above a signal or parameter’s identifier in the generated code.

¢ On the Data Placement pane of the Configuration Parameters dialog box,
in the Global data placement (MPT data objects only) subpane:

= The Module naming parameter allows you to name the module that
owns the model

= The Signal display level parameter allows you to specify whether or
not the code generator declares a signal data object as global data

Creating Simulink® and mpt Data Objects

= The Parameter tune level parameter allows you to specify whether

or not the code generator declares a parameter data object as tunable
global data

Signal and Parameter Properties

The properties that appear in Model Explorer when mpt is the package include
all the properties that appear when Simulink is the package plus additional
properties. Notice this by comparing the next two figures. (For descriptions of

all properties in Model Explorer, see Parameter and Signal Property Values
on page A-20.)

& Model Explorer

[|
File Edit view Tools Add Help
o smaxHEIc%f fo@ D@45 wnmz A
| ssach [oy Bk Tsme = Tope: [han =1 [&f Seach
Madel Hisrarchy | Contents of: Base Workspace || Simulink_Signal: A
-] Simulink Root DataType | value | D | Datatips [auto] s |
- Ty Dass Workepscs || cinersions [Complesity: [auto =
Erlwdamo_mpf Sample tlme:l-‘\ Sample mode:l) ﬂ
Minimurm: — [-nf Masimur:— [int
Iniial value:
~Code generation option:
Storage class: |Aulo ;I
Alias |
Description:
| e 2+
EEnE Revert Help Apply

3-15

3 Managing the Data Dictionary

F& Model Explorer 7

i =1ol x|
File Edit Yiew Tools Add Help
Dt eeX BHcwHf fod oo 45 awmz A
Search: [by Block Type | Type: [Chant =] B Seach |
Model Hierarchy “ Conterts of: Base Workspace ‘ mpt Signal: A
=[E9] Simuink Root Valuz | Dimersions | || Datatupe: [auto | Urits [=)
4 Base Workepace B R | virc-co [= =
iirnceno_met S e Samplz mode: [auto |
| Minimum: et Masimur: [Inf
e [
Code generation opti
Storage class: | Global [Custom] =]
Custom attribut
Memory sectian: | Default a|
Header e
Dwiner
Defintion file:
Persisterce levet [T
Bl
Description
i e i &
R Fievert Help | Apply |

Configuration Parameters

The following configuration parameters relate to Real-Time Workshop
Embedded Coder module packaging features. These parameters are available
in the Configuration Parameters dialog box and Model Explorer when the

system target file selected for a Simulink model is ert.tlc (or a system target
file derived from an ert.tlc):

®* Custom comments (MPT objects only) option on the Real-Time
Workshop/Comments pane

* In the Global data placement (MPT data objects only) subpane on the
Real-Time Workshop/Data Placement pane:

= Module naming parameter
= Signal display level parameter

= Parameter tune level parameter

3-16

Creating Simulink® and mpt Data Obijects

Generated Code

In the example used in “Setting Property Values for Simulink® Data Objects”
on page 3-9, you selected Default (Custom) in the Storage class field for
signal A and parameter F1. You selected the default Auto in the Storage
class field for the remaining data objects. But for the mpt data objects you
used the default Global (Custom) in the Storage class field for all data
objects. When you generated code, these selections resulted in the definitions
and declarations shown in the table below.

Simulink Data Object with
Auto Storage Class

Simulink Data Object with
Default (Custom) Storage
Class

mpt Data Object with

Global (Custom) Storage
Class and Definition File
Named mydefinitionfile

In rtwdemo_mpf.c:

/* For signal A */
Externallnputs rtu;

/* For parameter F1 */
if(rtU.A * 2.0 > 10.0)

In rtwdemo_mpf.h:

/* For signal A */

typedef struct {
real T A;

} Externallnputs;

extern Externallnputs rtu;

foold

In global.c:

real T A;

real T F1 = 2.0;

In global.h:

extern real T A;
extern real T F1;

In mydefinitionfile.c:

real T A;

real T F1 = 2.0;

In global.h:

extern real T A;
extern real T F1;

The results shown in the second and third columns of the preceding table
require the following configuration parameter adjustments on the Real-Time
Workshop > Data Placement pane:

¢ Set Data definition to Data defined in single separate source

file.

¢ Set Data definition filename to global.c

3-17

3 Managing the Data Dictionary

3-18

e Set Data declaration to Data declared in single separate source
file.

¢ Set Data definition filename to global.h

See the left column of the table, which shows generated code for Simulink
signal and parameter data objects, whose Storage class field is Auto. The
input A is defined as part of the structure rtU as shown above. In the case
of the Simulink parameter data object F1, since the StorageClass was set
to auto, the code generator chose to include the literal value of F1 in the
generated code. F1 is a constant in the Stateflow® diagram whose value

is initialized as 2.0:

if(rtu.A * 2.0 > 10.0) {

For more details, see “Introduction to Custom Storage Classes” in the
Real-Time Workshop Embedded Coder documentation and “Summary of
Signal Storage Class Options” in the Real-Time Workshop documentation.

See the middle column of the table. The Simulink data objects whose Storage
class is not Auto are defined in a definition statement in the global source
file (global.c) and declared in a declaration statement in the global header
file (global.h).

In the right column, Simulink data objects whose Storage class is not Auto
are defined in mydefinitionfile, as you specified. The declarations for those
objects are in the global header file.

Creating Data Objects Based on an External Data
Dictionary

This procedure creates data objects based on an external data dictionary (such
as a Microsoft® Excel® file). You can do this manually (that is, one-by-one) or
automatically (all at once).

Creating Simulink® and mpt Data Objects

Manually Creating Objects to Represent External Data

You can create data objects (and their properties) one-by-one, based on an
external data dictionary, as follows:

1 Open the external file that contains the data (such as a spreadsheet or
database file).

2 Determine all of the data in this file that correspond to the parameters and
signals in the model. In the code generation data dictionary, parameters
in the external file belong to the Simulink parameter class and signals
belong to the Simulink signal class.

3 On the MATLAB command line, type daexplr and press Enter. The Model
Explorer appears.

4 On the Model Hierarchy (left) pane, expand Simulink Root, and select
Base Workspace.

5 On the Add menu, select MPT Parameter or Simulink Parameter. The
default name Param appears in the Contents of (middle) pane.

6 Double-click Param and rename this data object as desired.

7 Repeat steps 5 and 6 for each additional data item in the external file that
belongs to the mpt.Parameter class or Simulink.Parameter class.

Now you will add data items in the external file that belong to the
mpt.Signal class or Simulink.Signal class.

8 On the Add menu, select MPT Signal or Simulink Signal. The default
name Sig appears in the Contents of pane.

9 Double-click Sig and rename the data object as desired.

10 Repeat steps 8 and 9 for each additional data item in the external file that
belongs to the mpt.Signal class or Simulink.Signal class.

All external data items for the mpt.Parameter or Simulink.Parameter
class, and the mpt.Signal or Simulink.Signal class now appear in the
Contents of pane and in the MATLAB workspace. Therefore, they have
been created in the code generation data dictionary.

3-19

3 Managing the Data Dictionary

3-20

Note The property values for these data objects are supplied by default.

Automatically Creating Objects to Represent External Data

You can create data objects (and their properties) all at once, based on

an external data dictionary by creating and running a .m file. This file
contains the same MATLAB commands you could use for creating data objects
one-by-one on the command line, as explained in “Working with Data Objects”
in the Simulink documentation. But instead of using the command line, you
place the MATLAB commands in the .m file for all of the desired data in

the external file:

1 Create a new .m file.

2 Place information in the file that describes all of the data in the external
file that you want to be data objects. For example, the following information
creates two mpt data objects with the indicated properties. The first is for a
parameter and the second is for a signal:

% Parameters

mptParCon = mpt.Parameter;
mptParCon.RTWInfo.CustomStorageClass ='Const';
mptParCon.value = 3;

% Signals

mptSigGlb = mpt.Signal;

mptSigGlb.DataType = 'int8';

3 Run the .m file. The data objects appear in the MATLAB workspace.

Note If you want to import data from an external data dictionary, you can
write functions that read the information, convert these to data objects, and
load them into the MATLAB workspace. Among available MATLAB functions
that you can use for this process are xmlread, xmlwrite, x1sread, xlswrite,
csvread, csvwrite, dlmread, and dlmwrite.

Saving and Loading Data Obijects

Saving and Loading Data Objects

In a .mat file, you can save the set of data objects (and their properties) that
you have created and load this information for later use or exchange it with
another user. You can save some of the data objects in the workspace or all of
them. See Opening, Loading, Saving Files in the MATLAB® documentation.

3-21

3 Managing the Data Dictionary

Applying Naming Rules to Identifiers Globally

In this section...

“Overview” on page 3-22

“Specifying Simulink® Data Object Naming Rules” on page 3-23
“Defining Rules That Change All Signal Names” on page 3-25
“Defining Rules That Change All Parameter Names” on page 3-25
“Defining Rules That Change All #defines” on page 3-26

Note The capabilities described in this section apply both to Simulink® and
mpt data objects.

Overview

Signal and parameter names appear on a Simulink model. The same names
appear as data objects on the Model Explorer. By default, these names are
replicated exactly in the generated code. For example, "Speed" on the model
(and workspace) appears as the identifier "Speed" in the code, by default. But
you can change how they appear in the code. For example, if desired, you can
change "Speed" to SPEED or speed. Or, you can choose to use a different name
altogether in the generated code, like MPH. The only restriction is that you
follow ANSI® C/C++ rules for naming identifiers.

There are two ways of changing how a signal name or parameter name is
represented in the generated code. You can do this globally, by following
the procedure in this section. This procedure makes selections on the
Configuration Parameters dialog box to change all of the names when code
generation occurs, according to the same rule. Or, you can change the names
individually by following the steps described in “Setting Property Values for
Simulink® Data Objects” on page 3-9. The relevant field in that procedure is
Alias on the Model Explorer.

If the Alias field is empty, the naming rule that you select on the
Configuration Parameters dialog box applies to all data objects. But if you

3. ANSI is a registered trademark of the American National Standards Institute, Inc.

3-22

Applying Naming Rules to Identifiers Globally

do specify a name in the Alias field, this overrides the naming rule for that
data object. The table below illustrates these cases. The table assumes that
you selected Force lower case as the naming rule. But with the information
provided, you can determine how any of the naming rules works for an mpt
data object or a Simulink data object (Force upper case, Force lower
case, or Custom M-function).

Naming Rules and Alias Override (Global Change of Force Lower Case Rule)

Name of Data

Name in Alias

Object in Model Field Package Result in Generated Code
A Simulink or mpt | a
A D Simulink or mpt | D

Specifying Simulink® Data Object Naming Rules
You specify Simulink data object naming rules on the Real-Time

Workshop > Symbols pane of the Configuration Parameters dialog box.
To access that pane,

1 Open an ERT-based model.

2 Open the Configuration Parameters dialog box from the Simulation menu
or Model Explorer.

3 Open the Real-Time Workshop > Symbols pane. See the subpane
Simulink data object naming rules.

3-23

3 Managing the Data Dictionary

3-24

Real-Time Workshop

General Report Comments

— Auto-generated identifier naming rules

Custom Code Debug Interface I G 4| >

—Identifier format control

Global variables: I SREMSM
Global types: | snigrsm
Field name of global types: I SMEM
Subsystem methods: I SREMSMSF

Local temporary variables: | SMsM

Local block output variables: I rtb_sMSM

Constant macros: I SREMNSM

Minimum mangle length: I 1

Maximum identifier length: | 31

Generate scalar inlined parameters as: IL\beraIs j
—Simulink data object naming rul

Signal naming: INone j

Parameter naming: INone ;I

#define naming: |N0ne 2|

™ Generate code only Build

J- Revert | Help |

Apply

Notice the preconfigured settings on this pane. If all of these are acceptable
as is, proceed to “Creating User Data Types” on page 3-28. Otherwise,
follow the procedures below, as desired, to change signal names, parameter
names, or parameter names that you want to use in a #define preprocessor
directive. “MPF Panes on the Configuration Parameters Dialog Box” on page
A-2 describes all fields on this pane and their possible settings for these

procedures.

¢ “Defining Rules That Change All Signal Names” on page 3-25
¢ “Defining Rules That Change All Parameter Names” on page 3-25
® “Defining Rules That Change All #defines” on page 3-26

Applying Naming Rules to Identifiers Globally

Defining Rules That Change All Signal Names

This procedure allows you to change all of the model’s signal names, using the
same rule. The new names will appear as identifiers in the generated code:

1 On the Signal naming field, click the desired selection. (MPF Elements
on Configuration Parameters Panes on page A-2, explains the possible
selections, under the Symbols pane.) The default is None. If you selected
Custom M-function, go to the next step. Otherwise, click Apply and then
generate and inspect code.

2 Write a function in M-code that changes all occurrences of signal names
in the model to appear the way you want as identifiers in the generated
code. (An example is shown in “Defining Rules That Change All Parameter
Names” on page 3-25.)

3 Save the function as a .m file in any folder that is in the MATLAB® path.

4 In the M-function field under Signal naming, type the name of the file
you saved in the previous step.

5 Click Apply and then generate and inspect code.

Defining Rules That Change All Parameter Names

This procedure allows you to change all of the model’s parameter names, using
the same rule. The new names will appear as identifiers in the generated code:

1 In the Parameter naming field, click the desired selection. (“MPF Panes
on the Configuration Parameters Dialog Box” on page A-2, explains the
possible selections, under the Symbols pane.) The default is None. If you
selected Custom M-function, go to the next step. Otherwise, click Apply,
and proceed to “Defining Rules That Change All Signal Names” on page
3-25.

2 Write a function in M-code that changes all occurrences of parameter
names in the model to appear the way you want as identifiers in the
generated code. For example, the code below changes all parameter names
as necessary to make their first letter uppercase, and their remaining
letters lowercase.

function

3-25

3 Managing the Data Dictionary

revisedName = initial caps_only(name, object)
INITIAL_CAPS_ONLY: User-defined naming rule causing each
identifier in the generated code to have initial cap(s).

o® o° o°

o°

name: name as spelled in model.
object: the object of name; includes name's properties.

o® of

o°

revisedName: manipulated name returned to MPT for the
code.

o°

= o°

revisedName = [upper(name(1)),lower(name(2:end))];

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In the M-function field under Parameter naming, type the name of the
file you saved in the previous step.

5 Click Apply and then define rules that apply to all signal names.

Defining Rules That Change All #defines

This procedure allows you to change all of the model’s parameter names
whose storage class you selected as Define in “Creating mpt Data Objects
with Data Object Wizard” on page 3-13, using the same rule. The new names
will appear as identifiers in the generated code:

1 In the #define naming field, click the desired selection. (“MPF Panes
on the Configuration Parameters Dialog Box” on page A-2, explains the
possible selections, under the Symbols pane.) The default is None. If you
select Custom M-function, go to the next step. Otherwise, click Apply and
proceed to “Defining Rules That Change All Parameter Names” on page
3-25.

2 Write a function in M-code that changes all occurrences of the parameter
name whose storage class you specified as Define in “Creating mpt Data
Objects with Data Object Wizard” on page 3-13 so that it appears the way
you want as an identifier in the generated code. (An example is shown
below.)

3-26

Applying Naming Rules to Identifiers Globally

3 Save the function as a .m file in any folder that is in the MATLAB path.

4 In the M-function field under #define naming, type the name of the
file you saved in the previous step.

5 Click Apply and then define rules that change all parameter names.

3-27

3 Managing the Data Dictionary

3-28

Creating User Data Types

In this section...

“Overview” on page 3-28
“Registering User Data Types Using sl_customization.m” on page 3-29

“Example User Data Type Customization Using sl_customization.m” on

page 3-31

Note The capabilities described in this section apply both to Simulink® and
mpt data objects.

Overview

By default, MathWorks™ data types (such as real32_T and uint8_T)

are used to define data in the generated code. If you prefer using your
company-standard data types (such as DBL and U8), you can define user
data types. To use this feature, you must register and create your data
types so that the code generator can associate them with the corresponding
MathWorks C/C++ data types. Then, the code generator will use your user
data types in the generated code instead of the MathWorks C/C++ data types.

The Real-Time Workshop® software automatically associates the MathWorks
C/C++ data types with the equivalent ANSI® C/C++ data types. If you want
to use only the default MathWorks C/C++ data types, you do not need to
register and create your own data types.

To register user data types, use the Simulink customization file

sl _customization.m. This file is a mechanism that allows you to use
M-code to perform customizations of the standard Simulink user interface.
The Simulink software reads the s1_customization.m file, if present on

the MATLAB® path, when it starts and the customizations specified in

the file are applied to the Simulink session. For more information on the

sl customization.m customization file, see “Customizing the Simulink User
Interface” in the Simulink documentation.

4. ANSI is a registered trademark of the American National Standards Institute, Inc.

Creating User Data Types

Once you have registered your user data types using s1_customization.m,
you must create the Simulink.AliasType objects corresponding to your
user data types. If your model references a user data type either directly
(for example, in the output data type of a block) or indirectly (for example,
a Simulink.Signal object data type is set to the user data type), you must
create the corresponding Simulink.AliasType object before updating

the model, running a simulation, or generating code. To create the
Simulink.AliasType objects, you can:

¢ Invoke the MATLAB function ec_create_type obj to programmatically
create all the required Simulink.AliasType objects

® Create Simulink.AliasType objects one at a time by selecting
Add > Simulink.AliasType in the Model Explorer

® Create Simulink.AliasType objects one at a time by entering the MATLAB
command userdatatype = Simulink.AliasType, where userdatatype is
a user data type registered in s1_customization.m

Registering User Data Types Using sl_customization.m

To register user data type customizations, you create an instance

of s1_customization.m and include it on the MATLAB path of the
Simulink installation that you want to customize. The s1_customization
function accepts one argument: a handle to an object called the
Simulink.CustomizationManager. For example,

function sl_customization(cm)

As a starting point for your customizations, the s1 _customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering Simulink user
data type customizations:

® addUserDataType(hObj, userName, builtinName, userHeader)

addUserDataType(hObj, userName, builtinName)

3-29

3 Managing the Data Dictionary

3-30

addUserDataType(hObj, userName, aliasTypeObj)
addUserDataType(hObj, userName, numericTypeObj)
addUserDataType(hObj, userName, fixdtString)

Registers the specified user-defined data type and adds it to the top of the
data type list, as displayed in the Data type pull-down list in the Model
Explorer.

= userName — Name of the user data type

= builtinName — MathWorks C/C++ data type to which userName is
mapped

= userHeader — Name of the user header file that includes the definition
of the user data type

= aliasTypeObj, numericTypeObj, or fixdtString —
Simulink.AliasType, Simulink.NumericType, or fixdt to
which userName is mapped

Note Ifa Simulink.AliasType or Simulink.NumericType object of the
same name as your registered user data type is already defined in the base
workspace, the definitions of the existing object and the registered user
data type must be consistent or a consistency warning will be displayed.

® moveUserDataTypeToTop(hObj, userName)

Moves the specified user-defined data type to the top of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

® moveUserDataTypeToEnd(hObj, userName)

Moves the specified user-defined data type to the end of the data type list,
as displayed in the Data type pull-down list in the Model Explorer.

® removeUserDataType(hObj, userName)
Removes the specified user-defined data type from the data type list.

Your instance of the s1_customization function should use these methods to
register user data types for your Simulink installation.

Creating User Data Types

The Simulink software reads the s1_customization.m file when it starts. If
you subsequently change the file, you must restart your Simulink session or
enter the following command at the MATLAB command line to effect the
changes:

sl_refresh_customizations

Example User Data Type Customization Using
sl_customization.m

The s1_customization.m file shown in Example 1: sl_customization.m for
User Data Type Customizations on page 3-31 uses the following methods:

® addUserDataType to register the user-defined data types MyInt16, MyInt32,
MyBool, and fixdt(1,8)

* moveUserDataTypeToTop to move MyBool to the top of the data type list, as
displayed in the Data type pull-down list in the Model Explorer

* removeUserDataType to remove the built-in data types boolean and
double from the data type list

Example 1: sl_customization.m for User Data Type Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add custom types

hObj.addUserDataType('MyInt16', 'int16_T', '<mytypes.h>');
hObj.addUserDataType('MyInt32', 'int32_T', '<mytypes.h>');
hObj.addUserDataType('MyBool', 'boolean_T');
hObj.addUserDataType('fixdt(1,8)"');

% Make MyBool first in the list
hObj.moveUserDataTypeToTop('MyBool');

% Remove built-in boolean and double from the list

hObj.removeUserDataType('boolean');
hObj.removeUserDataType('double');

3-31

3 Managing the Data Dictionary

3-32

end

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Model
Explorer. For example, you could view the customizations as follows:

1 Start a MATLAB session.

2 Open Model Explorer, for example, by entering the MATLAB command
daexplr.

3 Select Base Workspace.
4 Add an mpt signal, for example, by selecting Add > MPT Signal.
5 In the right-hand pane display for the added mpt signal, examine the Data

type drop-down list, noting the impact of the changes specified in Example
1: sl_customization.m for User Data Type Customizations on page 3-31.

3 Model Explorer

- o) x|
Fle Edt ¥ew Tools Add Help
[s mmx[EH=%f foen 48] armz A
HSealch [y Block Type = v | | Seaich |
Model Hierarchy Cortents of. Base Warkspace mpt Signal: Sig
8] Simulink Root [Neme [“alue | DataTyp|| Datatype: [auio Uris: =
i Base Warkspace £ Sig auto Dimensiors: Remke Complesity: | auto 'I
B unlitled S MyBool [
ample lime:| ¢ gy ample mode: | auto |
Mimirnur: Myplnt32 M asimim: Inf
Iritial value; |MHNTE
single
—Code gener intg
Storage clf uintd — =l
Custom 4 1116
uint16 -
Memary sEEToR e |
Headerfie: |
Dimer |
Drefinition file: |
Persistence levet [1
Alias: |
Description
4 | =
Contents | Search Results e Hoo | aob |
A

Selecting User Data Types for Signals and Parameters

Selecting User Data Types for Signals and Parameters

In this section...

“Preparing User Data Types and an Example Model” on page 3-33
“Selecting User Data Types for Simulink® Signals” on page 3-34

“Selecting User Data Types for Simulink® Parameters” on page 3-38

Preparing User Data Types and an Example Model

This procedure requires that you have

* Registered user data type 32, associating it with MathWorks™ C/C++
data type real32_T

® Specified <userdata_types.h> as the #include.h file for 32 in
sl_customization.m.

An example of the typedef statement you place in the #include file,
userdata_types.h, is

typedef float f32;

Open a model and create a data dictionary. (See “Creating Simulink® and mpt
Data Objects” on page 3-5.) The example model used in this procedure and
its resulting Model Explorer display are shown below. The three data objects
are signals sig1 and sig2, and parameter g. The registered, user-defined
data type, f32, appears in the middle pane. The "T" indicates f32 is an

alias data type.

3-33

3 Managing the Data Dictionary

3-34

E!sampleUserDT M=]E3

File Edit “iew Simulation Format Tool: Help

DSEH&| LB 2| = fos [iom
In2 =

Ready [100% [|T=0.00 [FixedStepDiscrete 5

The Model Explorer display for the model looks like this:

& Model Explorer

File Edit Wiew Tools Add Help

=0l x|

D[smax[BEH %O D@ 48

tadel Hierarchy

& [E9] Simulink Root
pace
Configuration Preferences
'-ﬂsampIEUserDT

auto
auto
real

Contents of: Base Workspace
I Namel DataTppe I Va\ual Complex
-+ sig?2 auto
= zigl auta
I[l{sj] g auto 1
[T] 2z
Jed

5

Base Workspace

The base [MATLAR] workspace contains
wariables that are visible to all Simulink models.
These vanables can be uzed to parameterize
certain model, block and signal parameters.

Revert Help Apply

Proceed to the following, as applicable:

¢ “Selecting User Data Types for Simulink® Signals” on page 3-34

¢ “Selecting User Data Types for Simulink® Parameters” on page 3-38

Selecting User Data Types for Simulink® Signals

This procedure explains how to use user-defined data types for Simulink®
signals and for their corresponding identifiers in the generated code. You can
use user-defined data types with signals whether or not they have Simulink

signal objects associated with them.

Selecting User Data Types for Signals and Parameters

1 For an mpt signal object that is associated with a signal in your model,

select the desired user data type in the Data type field. For example,
select 32, for sig1, as shown below.

B =10ix
Fie Edt View Teoh Add Heb
R EEICEE IR M--IES T & X |
Hiceled Hemrchy Conderis of: Base Weskspace gl Sagral w1
oS, Frcct Tiom [Cuatzpe [Smaniet | Urer cbiect e auro = =
E‘n“’w““““‘“ = ™ I T] Urits: [
| oo [B —
o l% I“U Sampietme: (50 e |
M) e T
Code gerisiod **
ushl
[T =l
Custom sttt den e
MunWm:;:“ —~ =
Haader flec T
v [
Delrstonte: [
Pessisterce levet 1

This selects 32 for the sig1 data object in the data dictionary, but does
not select f32 for the corresponding labeled signal in the model. So the

two may be in conflict. If you tried to update the model, you could get an
error message.

For a Simulink signal object, type f32 into the Data type field.

2 Select the model and double-click the signal’s source block. (The source
block of a model signal controls the signal’s data type.) For example, since

the source block for sig1 is the Sum block, double-click the Sum block. The
Function Block Parameters dialog box appears.

E! Function Block Parameters: Sum x|
Sum

Add or subltiact inputs. Specify one of the follawing:
a| string containing + or - for each input port, | for spacer between ports (e.g. ++-++)
b zcalar »=1. A walue > 1 sumg all inputs; 1 sums elements of a single input vector

M ain ISlgnaIDalaTypes I

Iecn shae: [EEEEARRGCGCGCGGCG—————————— -
List of signs:

||++

Sample time [-1 for inherited):

|1

(]9 I LCancel Help Lpply

3-35

3 Managing the Data Dictionary

3 Select the Signal data types tab. In the Output data type mode field,
select Specify via dialog. The dialog box expands.

4 As shown below, in the Output data type field, type the same user data
type name that you selected for the data object (step 1), and then click

Apply. The user data type of the signal in the model and that of the signal
object now are the same.

= Function Block Parameters: Sum

x|
Su

Add or sublract inputs. Specify one of the following:
a] sting containing + or - for each input port, | for spacer between ports (2.0, ++-++]
b] scalar = 1. & value > 1 sums all inputs; 1 sums elements of a single input wector

Main | Signal Data Types |

[~ Require allinputs ko have the same data type

Output data type: mnde'l Specify via dialog
Output data type [e.g. sfix1E]. uint(8], float'single']):

E]

Output scaling value [Slope, e.g. 279 or [Slope Bias]. e.g. [1.25 3]}
|20

[Lock output scaling against changes by the autoscaling tool

Round integer caloulations towald:l Floor

[~ Saturate on integer overtlow

oK I Lancel | Help | Apply |

Instead of specifying a specific data type (step 4), you could do what is
termed dictionary-driven data typing: In the Output data type field,

specify object.DataType, where object is the case-sensitive object name.
For example, sig1.DataType, as shown below.

3-36

Selecting User Data Types for Signals and Parameters

E! Function Block Parameters: Sum x|

Sur

Add or subtract inputs. Specify one of the follawing:
a] string containing + ar - for each input port, | for spacer bebween ports (g0, ++H++]
b] scalar »=1. & value > 1 sums all inputs: 1 sums elements of a single input wector

tdain ‘ Signal Data Types |

[Require all inputs to have the same data type

Output data type mode:l Specify via dialog ;I

Output data type [2.g. sfix[16]). uint(8], flaat'single']):
IsigW DataType

Output sealing value (Slope, e.g. 2°-9 or [Slope Bias]. e.q. [1.25 2]}
|20

[~ Lock output scaling againgt changes by the autoscaling toal

Round integer calculations luwald.l Floor ;I

[~ Saturate on integer overtlow

0K I LCancel |

5 o |

The advantage of referencing like this is that subsequent changing of the
user data type in the dictionary for this object automatically changes the
user data type of the corresponding model signal.

Repeat steps 1 through 5 for each remaining model signal that has a
corresponding signal object for which you selected a user data type.

Save the model and save all of the data objects in the MATLAB® base
workspace in a .mat file for reuse later. After generating code, you would
see the following code fragment for the example model sampleUserDT.md1l
(that has the default MPF settings):

In sampleUserDT.c: f32 sigi;

In sampleUserDT_types.h: #include <userdata_types.h>

3-37

3 Managing the Data Dictionary

3-38

Selecting User Data Types for Simulink® Parameters

This procedure explains how to use a registered, user-defined data type as the
data type for a Simulink parameter and for its corresponding identifier in the
generated code. Unlike mpt signal objects, described in “Selecting User Data
Types for Simulink® Signals” on page 3-34, registered user data types cannot
be used directly with Simulink parameter objects, as shown below.

S Model Explorer

=13l
Fie Edit View Tools Add Help

Dy hax BHcnilf@ Mm@ 45
Model Hierarchy
- 8] Simulink Riaot
E Base ‘Workspace
---%Eonflgulallon Preferences
- gl sampleLlseD T

Contents of. Base Workspace Simulink.Parameter: g

[Name [DataType [Yalue | Comples | Value: fh

£ sig2 auta auto

Data type: Iaulu Units: |
£ sigl auto sutar

auto

Dimerions: [[1 1] Complesity: [real

i o
[T] f32

Mirirnum; |-\nf M awirnuirm; |\nf

1~ Code generation optian:

Storage class: | Auto ﬂ
Hlias: |

Description:

ol | | FRevert Help Apply

RN

Note that f32 appears in the middle pane and thus is a registered user data
type. But it is not available for selection in the right pane.) Instead, for some
blocks (like Gain), you can specify the user data type by double-clicking

the block and using the Parameter data types tab on the Function Block
Parameters dialog box.

The steps below illustrate this method. However, for many blocks, the
Parameter data types tab is not available. In these cases, the data type of
the block’s input or output signal determines the block’s parameter data type.

1 Double-click the parameter’s source block. For example, the source block
for g is the Gain block. The Function Block Parameters dialog box appears.

Selecting User Data Types for Signals and Parameters

=] Function Block Parameters: Gain |

Gain
’7 Element-wize gain [y = K. *u) ar matrix gain [y = K*uar p = u*K].

tdain ISignaIDataT_l,lpes | Parameter Data Types I
Gain:

Multiplicatiorn: I Element-wise(k.“u) j

Sample time [-1 far inherited):
-1

ak LCancel | Help | Apply |

2 Select the Parameter data types tab. In the Parameter data type
mode field, select Specify via dialog. The dialog box expands.

3 As shown below, in the Parameter data type field, type the desired,
registered user data type name, and click Apply.

E! Function Block Parameters: Gain x|

Gain
’7 Element-wize gain [y = K._*u) ar matrix gain [y = K*u ar p = wK).

Main | Signal Data Types | Parameter Data Types |

Parameter data type mode:l Specify via dialog j
Parameter data type [e.g. sfix[16], uint{8]. float('single]):

[EZ

Parameter scaling model Best Precision: M atrix-wize j

ok I LCancel | Help | Apply |

4 Repeat steps 1 through 4 for each remaining Simulink parameter for which
you want to specify a registered user data type.

3-39

3 Managing the Data Dictionary

5 Save the model and save all of the data objects in a MATLAB base
workspace in a .mat file for reuse later. After generating code, you would
see the following code fragment for the example model sampleUserDT.md1:

In sampleUserDT.c: real32 T g = 1.0F;

In sampleUserDT_types.h: #include <userdata_types.h>

3-40

Registering mpt User Object Types

Registering mpt User Object Types

In this section...

“Introduction” on page 3-41
“Registering mpt User Object Types Using sl_customization.m” on page 3-41

“Example mpt User Object Type Customization Using sl_customization.m”
on page 3-43

Introduction

Real-Time Workshop® Embedded Coder™ software allows you to create
custom mpt object types and specify properties and property values to be
associated with them (see “Creating mpt Data Objects with Data Object
Wizard” on page 3-13). Once created, a user object type can be applied to data
objects displayed in Model Explorer. When you apply a user object type to a
data object, by selecting a type name in the User object type pull-down

list in Model Explorer, the data object is automatically populated with the
properties and property values that you specified for the user object type.

To register mpt user object type customizations, use the Simulink®
customization file s1_customization.m. This file is a mechanism that allows
you to use M-code to perform customizations of the standard Simulink user
interface. The Simulink software reads the s1_customization.m file, if
present on the MATLAB® path, when it starts and the customizations
specified in the file are applied to the Simulink session. For more information
on the s1_customization.m customization file, see “Customizing the
Simulink User Interface” in the Simulink documentation.

Registering mpt User Object Types Using
sl_customization.m

To register mpt user object type customizations, you create an instance

of s1_customization.m and include it on the MATLAB path of the
Simulink installation that you want to customize. The s1_customization
function accepts one argument: a handle to an object called the
Simulink.CustomizationManager. For example,

function sl _customization(cm)

3-41

3 Managing the Data Dictionary

3-42

As a starting point for your customizations, the s1 _customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering mpt user object
type customizations:

® addMPTObjectType(hObj, objectTypeName, classtype, propNamel,
propValuel, propName2, propValue2, ...)

addMPTObjectType(hObj, objectTypeName, classtype, {propNamei,
propName2, ...}, {propValuel, propValue2, ...})

Registers the specified user object type, along with specified values for
object properties, and adds the object type to the top of the user object
type list, as displayed in the User object type pull-down list in the Model
Explorer.

= objectTypeName — Name of the user object type

= classType — Class to which the user object type applies: 'Signal’,
'Parameter’', or 'Both'

= propName — Name of a property of an mpt or mpt-derived data object to
be populated with a corresponding propValue when the registered user
object type is selected

= propValue — Specifies the value for a corresponding propName
® moveMPTObjectTypeToTop(hObj, objectTypeName)

Moves the specified user object type to the top of the user object type list, as
displayed in the User object type pull-down list in the Model Explorer.

® moveMPTObjectTypeToEnd(hObj, objectTypeName)

Moves the specified user object type to the end of the user object type list,
as displayed in the User object type pull-down list in the Model Explorer.

® removeMPTObjectType(hObj, objectTypeName)

Removes the specified user object type from the user object type list.

Registering mpt User Object Types

Your instance of the s1_customization function should use these methods to
register mpt object type customizations for your Simulink installation.

The Simulink software reads the s1_customization.m file when it starts. If
you subsequently change the file, you must restart your MATLAB session
to effect the changes.

Example mpt User Object Type Customization Using
sl_customization.m

The s1_customization.m file shown in Example 2: sl_customization.m for
mpt Object Type Customizations on page 3-43 uses the addMPTObjectType
method to register the user signal types EngineType and FuelType for mpt
objects.

Example 2: sl _customization.m for mpt Object Type Customizations

function sl _customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add commonly used signal types
hObj.addMPTObjectType(...
"EngineType', 'Signal', ...
'DataType', 'uint8',...
'Min', 0,...
'Max', 255,...
'DocUnits', 'm/sec');

hObj.addMPTObjectType(...
'FuelType', 'Signal', ...
'DataType', 'inti16',...
'Min', -12,...
'Max', 3000,...
'DocUnits', 'mg/hr');

end

3-43

3 Managing the Data Dictionary

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Model
Explorer. For example, you could view the customizations as follows:

1 Start a MATLAB session.

2 Open Model Explorer, for example, by entering the MATLAB command
daexplr.

3 Select Base Workspace.
4 Add an mpt signal, for example, by selecting Add > MPT Signal.

5 In the right-hand pane display for the added mpt signal, examine the User
object type drop-down list, noting the impact of the changes specified
in Example 2: sl_customization.m for mpt Object Type Customizations
on page 3-43.

6 From the User object type drop-down list, select one of the registered
user signal types, for example, FuelType, as shown below, and verify that
the displayed settings are consistent with the arguments specified to the
addMPTObjectType method in s1_customization.m.

3-44

Registering mpt User Object Types

jodel Explorer

File Edit View Tools Add Help

=1olx|

[z teax BHc%Hf fo0 @m40|vnrnza)

H Search; Iby Block Type

LI Type: I

LI Search

Model Hierarchy

=[] Sk oot
‘ Base Workspace

- ﬂunhlled

Contents of: Base Workspace

| Hame

| Walue I DataTyp

-+ Sig

o |

intE

|

Contents | Search Results

mpt_Signal: Sig

User object type: hd =
[ata bype: int16 ~ | Units: lmgfhr—
Dimenzions: |1— Complexity: lh
Sample time: |1— Sample mode: lh
Miirnum: |12— I azimun IE‘DDD—
Iritial vl l—

i Code generation optiot

Storage c\ass:l Global [Custom]

-

Custorn attribu

Memory section: I Defaul

=

Header file: |

Ouwner: |

Definition file: I

Persistence level |1

Alias: |

Description;

Revert Help |

3-45

3 Managing the Data Dictionary

Replacing Built-In Data Type Names in Generated Code

In this section...

“Replacing Built-In Data Type Names” on page 3-46
“Data Type Replacement Limitations” on page 3-52

Replacing Built-In Data Type Names

If your application requires you to replace built-in data type names with
user-defined replacement data type names in the generated code, you can do
so from the Real-Time Workshop > Data Type Replacement pane of the
Configuration Parameters dialog box, shown below in the Model Explorer view.

Real-Time Workshop

4[>

*bug | Interface | Code Style Templates Data Placement
™ Replace data type names in the generated code

I Generate code only Build

J Revert Help | Apply |

3-46

Replacing Builtin Data Type Names in Generated Code

This pane is available for ERT target based Simulink® models. In addition
to providing a mechanism for mapping built-in data types to user-defined
replacement data types, this feature:

® Performs consistency checks to ensure that your specified data type
replacements are consistent with your model’s data types.

¢ Allows many-to-one data type replacement, the ability to map multiple
built-in data types to one replacement data type in generated code. For
example, built-in data types uint8 and boolean could both be replaced in
your generated code by a data type U8 that you have previously defined.

Note For limitations that apply, see “Data Type Replacement Limitations”
on page 3-52.

If you select Replace data type names in the generated code, the Data
type names table is displayed:

3-47

3 Managing the Data Dictionary

Real-Time Workshop

‘bug I Interface I Code Style I Templates I Data Placement Data Type Replacement | 1| 3
[v iReplace data type names in the generated code :
—Data type names

Simulink Real-Time Workshop Replacement
MName MName Name

double real_T

single real32_T
int32 int32_T
int1s intle_T
int3 int8_T

uint32 unt32_T
uint1s uint1s_T
uint3 uint8_T

boolean boolean_T

int int_T

uint unt_T
char char_T

I™ Generate code only Build

J Revert | Help | Apply |

The table Data type names lists each Simulink built-in data type name
along with its Real-Time Workshop® data type name. Selectively fill in fields
in the third column with your replacement data types. Each replacement data
type should be the name of a Simulink.AliasType object that exists in the
base workspace. Replacements may be specified or not for each individual
built-in type.

For each replacement data type entered, the BaseType property of the
associated Simulink.AliasType object must be consistent with the built-in
data type it replaces. For double, single, int32, int16, int8, uint32,
uint16, uint8, and boolean, the replacement data type’s BaseType must
match the built-in data type. For int, uint, and char, the replacement data
type’s size must match the size displayed for int or char on the Hardware
Implementation pane of the Configuration Parameters dialog box. An error
occurs if a replacement data type specification is inconsistent.

3-48

Replacing Builtin Data Type Names in Generated Code

For example, suppose that you have previously defined the following
replacement data types, which exist as Simulink.AliasType objects in the
base workspace:

User-Defined Name Description

FLOAT64 64-bit floating point
FLOAT32 32-bit floating point
832 32-bit integer

S16 16-bit integer

S8 8-bit integer

u32 Unsigned 32-bit integer
uieé Unsigned 16-bit integer
VL] Unsigned 8-bit integer
CHAR Character data

You can fill in the Data Type Replacement pane with a one-to-one
replacement mapping, as follows:

3-49

3 Managing the Data Dictionary

3-50

Real-Time Workshop

‘bug I Interface I Code Style I Templates I Data Placement Data Type Replacement | 1| 3
[v Replace data type names in the generated code
—Data type names

Simulink Real-Time Workshop Replacement

MName Mame MName
double real T |FLOATE4
single real32T |FLoATa2
nt32 int32_T |s32
ntls intls T |s15

int8 inta_T E
unts2 unt32_T jusz
Lintls wuint1s_T Juis
uints uints_T |us

boolean boolean_T I

int int_T |
unt untT |
char char_T | crar]

I™ Generate code only Build

J- Revert | Help | Apply |

You can also apply a many-to-one data type replacement mapping. For
example, in the following display:

e int32 and int are replaced with user type S32

® uint32 and uint are replaced with user type U32

® uint8 and boolean are replaced with user type U8

Note Many-to-one data type replacement does not support the char (char_T)
built-in data type. Use char only in one-to-one data type replacements.

Replacing Builtln Data Type Names in Generated Code

Real-Time Workshop

‘bug I Interface I Code Style I Templates I Data Placement Data Type Replacement | 1| 3
¥ Replace data type names in the generated code
—Data type names

Simulink Real-Time Workshop Replacement
MName Name Name

double real_T |

single real32_T I
nt32 int32_T |s32
intls intls T |
int8 inta_T |

unts2 unt32_T Jusz
Lintls wuint1s_T |

uints uints_T |us
boolean boolean_T I us
int int_T |s32
unt untT jusal
char char_T I

I™ Generate code only Build

J- Revert | Help | Apply |

The user-defined replacement types you specify will appear in your model’s
generated code in place of the corresponding built-in data types. For example,
if you specify user-defined data type FLOAT64 to replace built-in data type
real T (double), then the original generated code shown in Example 3:
Generated Code with real T Built-In Data Type on page 3-52 will become the
modified generated code shown in Example 4: Generated Code with FLOAT64
Replacement Data Type on page 3-52.

3-51

3 Managing the Data Dictionary

3-52

Example 3: Generated Code with real_T Built-In Data Type

/* Model initialize function */
void sinwave_initialize(void)

{

{real_T *dwork_ptr = (real_T *) &sinwave_DWork.lastSin;

Example 4: Generated Code with FLOAT64 Replacement Data Type

/* Model initialize function */
void sinwave_initialize(void)

{

{FLOAT64 *dwork_ptr = (FLOAT64 *) &sinwave_DWork.lastSin;

Data Type Replacement Limitations

® Data type replacement does not support multiple levels of mapping. Each
replacement data type name maps directly to one or more built-in data

types.

® Data type replacement is not supported for simulation target code
generation for referenced models.

® Data type replacement is not supported if the GRT compatible call
interface option is selected for your model.

¢ Data type replacement occurs during code generation for all .c, .cpp, and
.h files generated in build directories (including top and referenced model
build directories) and in the sharedutils directory. Exceptions are as
follows:

rtwtypes.h

Replacing Builtin Data Type Names in Generated Code

model sf.c or .cpp (ERT S-function wrapper)
model dt.h (C header file supporting external mode)
model_capi.c or .cpp

model_capi.h

¢ Data type replacement is not supported for complex data types.

¢ Many-to-one data type replacement is not supported for the char built-in
data type. Attempting to use char as part of a many-to-one mapping to a
user-defined data type introduces a violation of the MISRA-C specification.
Specifically, if char (char_T) and either int8 (int8_T) or uint8 (uint8_T)
are mapped to the same user replacement type, the result is a MISRA-C
violation. Additionally, if you try to generate C++ code, invalid implicit
type casts are made and compile-time errors may result. Use char only in
one-to-one data type replacements.

3-53

3 Managing the Data Dictionary

3-54

Customizing Data Object Wizard User Packages

In this section...

“Introduction” on page 3-54

“Registering Data Object Wizard User Packages Using sl_customization.m”
on page 3-54

“Example Data Object Wizard User Package Customization Using
sl_customization.m” on page 3-56

Introduction

Data Object Wizard (DOW) can be run in connection with a Simulink®
model to quickly determine which model data are not associated with data
objects and to create and associate data objects with the data. (For more
information about Data Object Wizard, see “Data Object Wizard” in the
Simulink documentation and “Creating Simulink® Data Objects with Data
Object Wizard” on page 3-6.) If you want the wizard to use data object classes
from a package other than the standard Simulink class package to create the
data objects, you select the package from the wizard’s Choose package for
selected data objects list. This package list can be customized in various
ways, including adding or removing packages and modifying the list order.

To register Data Object Wizard user package customizations, use the Simulink
customization file s1_customization.m. This file is a mechanism that allows
you to use M-code to perform customizations of the standard Simulink user
interface. The Simulink software reads the s1_customization.m file, if
present on the MATLAB® path, when it starts and the customizations
specified in the file are applied to the Simulink session. For more information
on the s1_customization.m customization file, see “Customizing the
Simulink User Interface” in the Simulink documentation.

Registering Data Object Wizard User Packages Using
sl_customization.m

To register Data Object Wizard user package customizations, you create
an instance of s1_customization.m and include it on the MATLAB
path of the Simulink installation that you want to customize. The

Customizing Data Object Wizard User Packages

sl customization function accepts one argument: a handle to an object
called the Simulink.CustomizationManager. For example,

function sl_customization(cm)

As a starting point for your customizations, the s1 _customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following methods for registering DOW user
package customizations:
® addUserPackage(hObj, packageName)

addUserPackage (hObj, cellArrayOfStrings)

Adds the specified user package(s) to the top of the package list, as
displayed in the Choose package for selected data objects pull-down
list in Data Object Wizard.

® moveUserPackageToTop(hObj, packageName)

Moves the specified user package to the top of the package list, as displayed
in the Choose package for selected data objects pull-down list in Data
Object Wizard.

® moveUserPackageToEnd(hObj, packageName)

Moves the specified user package to the end of the package list, as displayed
in the Choose package for selected data objects pull-down list in Data
Object Wizard.

®* removeUserPackage (hObj, packageName)
Removes the specified user package from the package list.
® setUserPackages(hObj, cellArrayOfStrings)
Replaces the entire package list with a specified list of user packages.

Your instance of the s1_customization function should use these methods to
register DOW user package customizations for your Simulink installation.

3-55

3 Managing the Data Dictionary

3-56

The Simulink software reads the s1_customization.m file when it starts. If
you subsequently change the file, you must restart your Simulink session or
enter the following command at the MATLAB command line to effect the
changes:

sl_refresh_customizations

Example Data Object Wizard User Package
Customization Using sl_customization.m

The s1_customization.m file shown in Example 5: sl_customization.m for
DOW User Package Customizations on page 3-56 uses the following methods:

® addUserPackage to add the user packages ECoderDemos and
SimulinkDemos (present by default in the MATLAB path) to the top of the
package list, as displayed in the Choose package for selected data
objects pull-down list in Data Object Wizard

* moveUserPackageToEnd to move SimulinkDemos to the end of the package
list

Example 5: sl customization.m for DOW User Package
Customizations

function sl _customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.slDataObjectCustomizer;

% Add user packages
hObj.addUserPackage ({'ECoderDemos', 'SimulinkDemos'});

% Move SimulinkDemos to end of list
hObj.moveUserPackageToEnd('SimulinkDemos');

end

Customizing Data Object Wizard User Packages

If you include the above file on the MATLAB path of the Simulink installation
that you want to customize, the specified customizations will appear in Data
Object Wizard. For example, you could view the customizations as follows:

1 Start a MATLAB session.
2 Launch a model, such as rtwdemo_udt.

3 Open Data Object Wizard, for example, by selecting Tools > Data Object
Wizard in the Simulink window.

4 In the Data Object Wizard dialog box, click the Find button to generate
a list of one or more data objects.

5 Examine the Choose package for selected data objects drop-down list,
noting the impact of the changes specified in Example 5: sl_customization.m
for DOW User Package Customizations on page 3-56.

=1o1x|
Unresolved data objects and data types found in analyzed model
Select each data object and data type you wish to create for the
model: rhwdemao_uck

| Object Hame | Clags | Package
I | outpout Sigrial ECoderDemos
Check Al | Uncheck Al |

Choose package for selected data objects:

Apply Package

Browae
Sirnulink:

hodel name: powdemo_uct

Findl options —————————————
¥ Rootinputs |V States ¥ Bl SimulinkDemas P Alas types
[Root outputs [Data stores | Parameters |
Find | Creste | Cancel | Help |

3-57

3 Managing the Data Dictionary

To replace the entire Data Object Wizard package list with a specified list of
user packages, you can use a method invocation similar to the following:

hObj.setUserPackages({'myPackagel1', 'ECoderDemos', 'mpt'});

3-58

Customizing with

Additional Options

This chapter describes the following module packaging features:

Ensuring Delimiter Is Specified for
All #Includes (p. 4-2)

Adding Custom Comments (p. 4-4)

Adding Global Comments (p. 4-6)

Selecting Persistence Level for
Signals and Parameters (p. 4-12)

Explains how to instruct the code
generator to use the angle-bracket
delimiter for all data objects whose
Header file property has no delimiter
specified.

Explains how to add the selected
data object’s property values as a
comment in the general code above
that data object’s identifier.

Explains how to add global
comments to a Simulink® model so
that the comment text appears in
the generated files where desired.

Controls the persistence level
of signal and parameter objects
associated with a model.

4 Customizing with Additional Options

Ensuring Delimiter Is Specified for All #Includes

Understanding the purpose of this procedure requires understanding the
Header file property of a data object, described in Parameter and Signal
Property Values on page A-20, and applied in “Creating mpt Data Objects
with Data Object Wizard” on page 3-13. For a particular data object, you can
specify as the Header file property value a .h filename where that data
object will be declared. Then, in the IncludeFile section of the generated file,
this .h file is indicated in a #include preprocessor directive.

Further, when specifying the filename as the Header file property value, you
may or may not place it within the double-quote or angle-bracket delimiter.
That is, you can specify it as filename.h, "filename.h", or <filename.h>.
The code generator finds every data object for which you specified a filename
as its Header file property value without a delimiter. By default, it assigns
to each of these the double-quote delimiter.

This procedure allows you to specify the angle-bracket delimiter for these
instead of the default double-quote delimiter. See the figure below.

1 In the #include file delimiter field on the Data Placement pane of the
Configuration Parameters dialog box, select #include <header.h> instead
of the default #include "header.h".

2 Click Apply.

Ensuring Delimiter Is Specified for All #Includes

4-3

4 Customizing with Additional Options

Adding Custom Comments

This procedure allows you to add a comment just above a signal or parameter’s
identifier in the generated code. This is accomplished using

¢ A function that you write in M-code or TLC-code and savein a .mor .tlc file

¢ The Custom comments (MPT objects only) check box on the Comments
pane of the Configuration Parameters dialog box

e Selecting the .m or .tlc file in the Custom comments function field on
the Comments pane of the Configuration Parameters dialog box.

You may include at least some or all of the property values for the data
object. Each Simulink® data object (signal or parameter) has properties,

as described in Parameter and Signal Property Values on page A-20. This
example comment contains some of the property values for the data object MAP
as specified on the Model Explorer:

/* DocUnits: PSI */
/* Owner: */
[* DefinitionFile: specialDef */

real_ T MAP = 0.0;

You can type text in the Description field on the Model Explorer for a signal
or parameter data object. If you do, and if you select the Simulink data
object descriptions check box on the Comments pane of the Configuration
Parameters dialog box, this text will appear beside the signal’s or parameter’s
identifier in the generated code as a comment. This is true whether or not
you select the Custom comments (MPT objects only) check box discussed
in this procedure. For example, typing Manifold Absolute Pressure in the
Description field for the data object MAP always will result in the following
in the generated code:

real_ T MAP = 0.0; /* Manifold Absolute Pressure */

1 Write a function in M-code or TLC-code that places comments
in the generated files as desired. An example .m file
named rtwdemo_comments_mptfun.m is provided in the
matlab/toolbox/rtw/rtwdemos directory. This file contains instructions.

Adding Custom Comments

The M-code function must have three arguments that correspond to
objectName, modelName, and request, respectively. The TLC-code must
have three arguments that correspond to objectRecord, modelName, and
request, respectively. Note also, in the case of the TLC file, you can use the
library function LibGetSLDataObjectInfo to get every property value of
the data object.

2 Save the function as a .m file or a .tlc file with the desired filename and
place it in any folder in the MATLAB® path.

3 Open the model and the Configuration Parameters dialog box.

4 Click Comments under Real-Time Workshop on the left pane. The
Comments pane appears on the right.

5 Select the Custom comments (MPT objects only) check box.

6 In the Custom comments function field, either type the filename of the
.m file or .tlc file you created, or select this filename using the Browse
button.

7 Click the Apply button.
8 Click Generate Code.

9 Open the generated files and inspect their content to ensure the comments
are what you want.

4 Customizing with Additional Options

4-6

Adding Global Comments

In this section...

“Introduction” on page 4-6
“Using a Simulink® DocBlock to Add a Comment” on page 4-6
“Using a Simulink® Annotation to Add a Comment” on page 4-8

“Using a Stateflow® Note to Add a Comment” on page 4-9

“Using Sorted Notes to Add Comments” on page 4-10

Introduction

The procedures in this section explain how to add a global comment to a
Simulink® model so that the comment text appears in the generated file or
files where desired. This is accomplished by specifying a template symbol
name with a Simulink DocBlock, a Simulink annotation, or a Stateflow® note,
or by using a sorted-notes capability that works with Simulink annotations or
Stateflow notes (but not DocBlocks). For more information about template
symbols, see “MPF Template Symbols and Rules” on page A-10.

Note Template symbol names Description and ModifiedHistory,
referenced below, also are fields in the Model Properties dialog box. If you use
one of these symbol names for global comment text, and its Model Properties
field has text in it too, both will appear in the generated files.

Using a Simulink® DocBlock to Add a Comment

1 With the model open, select Library Browser from the View menu.

2 Drag the DocBlock from Model-Wide Utilities in the Simulink library
onto the model.

3 After double-clicking the DocBlock and typing the desired comment
in the editor, save and close the editor. See DocBlock in the Simulink
documentation for details.

Adding Global Comments

4 Right-click the DocBlock and select Mask Parameters. The Block
Parameters dialog box appears.

5 Type one of the following Documentation child into the RTW Embedded
Coder Flag field, illustrated below, and then click OK: Abstract,

Description, History, ModifiedHistory, or Notes. Template symbol
names are case sensitive.

L=IBlock Parameters: DocBlock

x|
—DocBlock (mask] [link]

Usze thiz black ta save long descriptive text with the madel. Double-clicking the black.
will open an editor.

P,

RTWw Embedded Coder Flag
Abstract

Document T_\Jpel Text

ar I LCancel | Help | Apply |

6 In the Block Properties dialog box, Block Annotation tab, select
%<ECoderFlag> as shown in the figure below, and then click OK. The

symbol name typed in the previous step now appears under the DocBlock
on the model.

4-7

4 Customizing with Additional Options

) Block Properties: (link)DocElock _IEI ﬂ
General | Block Annotation | Callbacks |

Usage

Text that appears below the block's lakel. Erter the text in the ahnotation
field. The text may Include any of the block property tokens in the Block
property tokens list. Simulink replaces each token with the value of the
carresponding property inthe genersted ahhotation. Click the == button to
enter the selected token in the annatation field. Text can be edited on the
right sidle edit field. See example syntax on the botom.

Block property tokens: Enter text and tokens for annotation:

WeincestorBlock= . il Y=ECoderFlag= ;I
#=BackgroundColor= " |
(%=BlockChoice=
[e=BlockDescription:=
Hh=BlockType=
H=CheckFochnCallhplne =
=DataTypeCverrice:
W =DataTypeCyearrice_
[%e=Description=
H=Diaghostics=
=DocLnertType:s

[Fa=DropShadoyw=

%=ErrorFers |
=ForegroundColars=

% =FunctionithSepar ¥ Example syhta:
1 2 MName=%=Mame=

Ok | Cancel | Help | Apply |

7 Save the model. After you generate code, the code generator places the
comment in each generated file whose template has the symbol name you
typed. The code generator places the comment in the generated file at
the location that corresponds to where the symbol name is located in the

template file.

8 To add one or more other comments to the generated files, repeat steps 1
through 7 as desired.

Using a Simulink® Annotation to Add a Comment

1 Double-click the unoccupied area on the model where you want to place the
comment. See “Annotating Diagrams” in the Simulink documentation for

details.

Note If you want the code generator to sort multiple comments for the
Notes symbol name, replace the next step with “Using Sorted Notes to Add
Comments” on page 4-10.

4-8

Adding Global Comments

2 Type <S:Symbol_name> followed by the comment, where Symbol_name is one

of the following Documentation child : Abstract, Description, History,
ModifiedHistory, or Notes. For example, type <S:Description>This is
the description I want. Template symbol names are case sensitive.
(The "S" before the colon indicates "symbol.")

3 Click outside the rectangle and save the model. After you generate code, the

code generator places the comment in each generated file whose template
has the symbol name you typed. The code generator places the comment
in the generated file at the location that corresponds to where the symbol
name is located in the template file.

4 To add one or more other comments to the generated files, repeat steps 1

through 3 as desired.

Using a Stateflow® Note to Add a Comment

Right-click the desired unoccupied area on the Stateflow chart where you
want to place the comment. See “Using Notes to Extend Charts” in the
Stateflow documentation for details.

Select Add Note from the drop down menu.

Note If you want the code generator to sort multiple comments for the
Notes symbol name, replace the next step with “Using Sorted Notes to Add
Comments” on page 4-10.

Type <S:Symbol name> followed by the comment, where Symbol name is one
of the following Documentation child : Abstract, Description, History,
ModifiedHistory, or Notes. For example, type <S:Description>This is
the description I want. Template symbol names are case sensitive.

Click outside the note and save the model. After you generate code, the
code generator places the comment in each generated file whose template
has the symbol name you typed. The code generator places the comment
in the generated file at the location that corresponds to where the symbol
name is located in the template file.

4 Customizing with Additional Options

4-10

5 To add one or more other comments to the generated files, repeat steps 1
through 4 as desired.

Using Sorted Notes to Add Comments

The sorted-notes capability allows you to add automatically sorted comments
to the generated files. The code generator places these comments in each
generated file at the location that corresponds to where the Notes symbol is
located in the template file.

The sorting order the code generator uses is

¢ Numbers before letters
®* Among numbers, 0 is first
* Among letters, uppercase are before lowercase.

You can use sorted notes with a Simulink annotation or a Stateflow note, but
not with a DocBlock:

¢ In the Simulink annotation or the Stateflow note, type <S:NoteY> followed
by the first comment, where Y is a number or letter.
® Repeat for as many additional comments you want, except replace Y with a

subsequent number or letter.

The figure below illustrates sorted notes on a model, and where the code
generator places each in a generated file.

Adding Global Comments

E!ecdemol * 10l =]

File Edit Yiew Simulation Format Tools Help

uirttd uint8
+ -
INC . sum o T | LIMIT
k

F
<5:Noteb>This iz the third comment.

equal_to_count |Poolean

¥
Tyint32 4 [int32 B
1 INPUT OUTPUT
uirits ; switch_out Amplifier
¥ <5:Note1=Thisis the first comment | want

<%:MoteZ=Thisisthe second comment | want under Notes. azsocisted with the Notes symbal.

| |

Here is the relevant fragment from the generated file for the above model:
** NOTES
** Notel1: This is the first comment I want
associated with the Notes symbol.
Note2: This is the second comment I want under Notes.

Noteb: This is the third comment.

* %

4-11

4 Customizing with Additional Options

4-12

Selecting Persistence Level for Signals and Parameters

With this procedure, you can control the persistence level of signal and
parameter objects associated with a model. Persistence level allows you to
make intermediate variables or parameters global during initial development.
At the later stages of development, you can use this procedure to remove
these signals and parameters for efficiency. Notice the Persistence Level
field on the Model Explorer, as illustrated in the figure below. For descriptions
of the properties on the Model Explorer, see Parameter and Signal Property
Values on page A-20.

& Model Explorer =10 x|
Eile Edit ¥iew Tools Add Help
[Dzs=exBHE“R]7 oo ma4ezazd
H Search: [by Hame =] miame: [] Search
Mode! Hierarchy IContentsof: Base Workspace mpt.Signak: A
=+[E5simulink Root Data type: [auto = -
T jBisce Workspace | [DataType [value | I =]
Bhlrtwdemo_mof [+] auto 2 Dimensions: [-1 Complexity: [auto =
ol s Sample time: |-1 Sample mode: |auto j
auto 3
autp 5 Minimum: [-Inf Manimum: [Inf
aute 26 pnitial value: | Units: |
auto s p)
o —Code generation option:
auto Storage dass: [Global (Custom) =l
auto Custom attribute:
to
=55 ::m Memory section: [Default k3|
= E auto Header file: |
-E Final auto Owner: |
=L e Definiton fie: |
£ 55 auto
Persistence level: | 1
Alias: |
Description:
T i
J | | _gontents | search mesuts | Bevert | e el
4

Notice also the Signal display level and Parameter tune level fields on
the Data Placement pane of the Configuration Parameters dialog box, as
illustrated in the next figure.

Selecting Persistence Level for Signals and Parameters

Real-Time Workshop

ols Custom Code I Debug | Interface I Code Style I Templates ;D

—Global data placement {custom storage dasses only)

Data definition: IData defined in 2 single separate source file

Data definition filename: |g\0bal.c

Data dedaration: IData dedared in a single separate header file
Data dedaration filename: Ig\obal.h
#indude file delimiter: IAubD

—Global data placement (MPT data objects only’

Module naming: INDt spedified - l
Signal display level: I 10 Parameter tune Ievel:l 10

I” Generate code only Build

J Revert | Help | Apply |

The Signal display level field allows you to specify whether or not the code
generator defines a signal data object as global data in the generated code.
The number you specify in this field is relative to the number you specify in
the Persistence level field. The Signal display level number is for all mpt
(module packaging tool) signal data objects in the model. The Persistence
level number is for a particular mpt signal data object. If the data object’s
Persistence level is equal to or less than the Signal display level, the
signal appears in the generated code as global data with all of the properties
(custom attributes) specified in “Creating mpt Data Objects with Data Object
Wizard” on page 3-13. For example, this would occur if Persistence level
is 2 and Signal display level is 5.

Otherwise, the code generator automatically determines how the particular
signal data object appears in the generated code. Depending on the settings
on the Optimization pane of the Configuration Parameters dialog box,
the signal data object could appear in the code as local data and thus have

4-13

4 Customizing with Additional Options

4-14

none of the custom attributes you specified for that data object. Or, based on
expression folding, the code generator could remove the data object so that it
does not appear in the code. (See “Tips for Optimizing the Generated Code” in
the Real-Time Workshop® Embedded Coder™ documentation and “Optimizing
a Model for Code Generation” in the Real-Time Workshop® documentation
for details on optimization.)

The Parameter tune level field allows you to specify whether or not the
code generator declares a parameter data object as tunable global data in the
generated code.

The number you specify in this field is relative to the number you specify in
the Persistence level field. The Parameter tune level number is for all
mpt parameter data objects in the model. The Persistence level number is
for a particular mpt parameter data object. If the data object’s Persistence
level is equal to or less than the Parameter tune level, the parameter
appears in the generated code with all of the properties (custom attributes)
specified in “Creating mpt Data Objects with Data Object Wizard” on page
3-13, and thus is tunable. For example, this would occur if Persistence level
is 2 and Parameter tune level is 5.

Otherwise, the parameter is inlined in the generated code, and Real-Time
Workshop settings determine its exact form.

Note that, in the initial stages of development, you may be more concerned
about debugging than code size. Or, you may want to ensure that one or
more particular data objects appear in the code so that you can analyze
intermediate calculations of an equation. In this case, you may want to
specify the Parameter tune level (Signal display level for signals) to be
higher than Persistence level for some or all mpt parameter (or signal) data
objects. This results in larger code size, because the code generator defines
the parameter (or signal) data objects as global data, which have all the
custom properties you specified. As you approach production code generation,
however, you may have more concern about reducing the size of the code

and less need for debugging or intermediate analyses. In this stage of the
tradeoff, you could make the Parameter tune level (Signal display level
for signals) greater than Persistence level for one or more data objects,
generate code and observe the results. Repeat until satisfied.

Selecting Persistence Level for Signals and Parameters

1 With the model open, in the Configuration Parameters dialog box, click
Data Placement under Real-Time Workshop.

2 Type the desired number in the Signal display level or Parameter tune
level field, and click Apply.

3 In the Model Explorer, type the desired number in the Persistence field
for the selected signal or parameter, and click Apply.

4 Save the model and generate code.

4-15

4 Customizing with Additional Options

4-16

Managing File Placement
of Data Definitions and
Declarations

Overview of Data Placement (p. 5-2) Identifies MPF settings that are
interdependent, and explains how
they control file placement of data
definitions and declarations.

Priority and Usage (p. 5-3) Identifies the priorities that exist
among interdependent MPF settings,
and their frequency of use.

Ownership Settings (p. 5-10) Describes ownership-related
parameter settings that affect
generated code.

Memory Section Settings (p. 5-11) Explains the effect of memory section
settings on the generated code.

Data Placement Rules (p. 5-12) Provides a complete set of data
placement rules.

Example Settings (p. 5-13) Provides examples of interdependent
MPF settings, and explanations of
the generated results.

5 Managing File Placement of Data Definitions and Declarations

5-2

Overview of Data Placement

This chapter focuses on module packaging features (MPF) settings that are
interdependent. Their combined values, along with Simulink® partitioning,
determine the file placement of data definitions and declarations, or data
placement. This includes

¢ The number of files generated.

® Whether or not the generated files contain definitions for a model’s global
identifiers. And, if a definition exists, the settings determine the files in
which MPF places them.

o Where MPF places global data declarations (extern).

The following six MPF settings are distributed among the main procedures
and form an important interdependency:

¢ The Data definition field on the Data Placement pane of the
Configuration Parameters dialog box.

¢ The Data declaration field on the Data Placement pane of the
Configuration Parameters dialog box.

® The Owner field of the data object in the Model Explorer, and the Module
naming and Module name fields on the Data Placement pane of the
Configuration Parameters dialog box. The term "ownership settings" refers
to Owner, Module naming, and Module name together.

¢ The Definition file field of the data object on the Model Explorer.
¢ The Header file field of the data object on the Model Explorer.
* The Memory section field of the data object on the Model Explorer.

Priority and Usage

Priority and Usage

In this section...

“Overview” on page 5-3
“Read-Write Priority” on page 5-5
“Global Priority” on page 5-7

“Definition File, Header File, and Ownership Priorities” on page 5-9

Overview

There is a priority order among interdependent MPF settings. From highest
to lowest, the priorities are

¢ Definition File priority

e Header File priority

¢ Ownership priority

e Read-Write priority or Global priority

Priority order varies inversely with frequency of use, as illustrated below. For
example, Definition File is highest priority but least used.

5 Managing File Placement of Data Definitions and Declarations

Override Global or Read-Write
for selected data object.

i

Highest priority Definition File Least used
A
Header File
Ownership
Read-Write Global
Y
Lowest priority Most used

MPF Settings Priority and Usage

Unless they are overridden, the Read-Write and Global priorities place in the
generated files all of the model’s MPF-derived data objects that you selected
using Data Object Wizard. (See “Creating Simulink® Data Objects with
Data Object Wizard” on page 3-6 for details.) Before generating the files,

you can use the higher priority Definition file, Header file, and Ownership,
as desired, to override Read-Write or Global priorities for single data objects.
Most users will employ Read-Write or Global, without an override. A few
users, however, will want to do an override for certain data objects. We expect
that those users whose applications include multiple modules will want to
use the Ownership priority.

The priorities are in effect only for those data objects that are derived from
Simulink.Signal and Simulink.Parameter, and whose custom storage
classes are specified using the Custom Storage Class Designer. (For details,
see “Designing Custom Storage Classes and Memory Sections” in the
Real-Time Workshop® Embedded Coder™ documentation.) Otherwise, the
Real-Time Workshop® build process determines the data placement.

Priority and Usage

Read-Write Priority

This is the lowest priority. Consider that a model consists of one or more
Simulink® blocks or Stateflow® diagrams. There can be subsystems within
these. For the purpose of illustration, think of a model with one top-level block
called fuelsys. You double-clicked the block and now see three subsystems
labeled subsys1, subsys2 and subsys3, as shown in the next figure. Signals
a and b are outputs from the top-level block (fuelsys). Signal a is an input
to subsys1 and b is input to subsys2. Signal ¢ is an output from subsys1.
Notice the other inputs and outputs (d and e). Signals a through e have
corresponding data objects and are part of the code generation data dictionary.

As explained in Chapter 3, “Managing the Data Dictionary” MPF provides
you with the means of selecting a data object that you want defined as an
identifier in the generated code. MPF also allows you to specify property
values for each data object. For this illustration, we choose to include all of
the data objects to be in the dictionary.

Model
a —>»| subsys1 —
c
g subsys3|—» e
d L
b —» subsys2 |—

t 1

fuelsys

5-5

5 Managing File Placement of Data Definitions and Declarations

The Generated Files

We generate code for this model. As shown in the figure below, this results in a
.c source file corresponding to each of the subsystems. (In actual applications,
there could be more than one .c source file for a subsystem. This is based on
the file partitioning previously selected for the model. But for our illustration,
we only need to show one for each subsystem.) Data objects a through e have
corresponding identifiers in the generated files.

A .c source file has one or more functions in it, depending on the internal
operations (functions) of its corresponding subsystem. An identifier in a
generated .c file has local scope when it is used only in one function of that
.c file. An identifier has file scope when more than one function in the same
.c file uses it. An identifier has global scope when more than one of the
generated files uses it.

A subsystem’s source file always contains the definitions for all of that
subsystem’s data objects that have local scope or file scope. (These definitions
are not shown in the figure.) But where are the definitions and declarations
for data objects of global scope? These are shown in the next figure.

a —»{ subsys1

b —{ subsys2

Model Generated Files
Results of Read-Write Priority
] subsyst.c subsys3.c
int c; int e;
c R extern int a; extern int c;
'subsy53—> e extern int d;
. >
subsys2.c fuelsys.c
[int d; int a;
extern int b; int b;

a b
t 1

fuelsys

Priority and Usage

When the Read-Write priority is in effect, this source file contains the
definitions for the subsystem’s global data objects, if this is the file that first
writes to the data object’s address. Other files that read (use) that data object
only include a reference to it. This is why this priority is called Read-Write.
Since a read and a write of a file are analogous to input and output of a
model’s block, respectively, there is another way of saying this. The definitions
of a block’s global data objects are located in the corresponding generated file,
if that data object is an output from that block. The declarations (extern) of a
block’s global data objects are located in the corresponding generated file, if
that data object is an input to that block.

Settings for Read-Write Priority

The generated files and what they include, as just described, occur when the
Read-Write priority is in effect. For this to be the case, the other priorities
are turned off. That is,

¢ The Data definition field on the Data Placement pane is set to Data
defined in source file.

¢ The Data declaration field on the Data Placement pane is set to Data
declared in source file.

¢ The Owner field on the Model Explorer is blank, and the Module naming
field on the Data Placement pane is set to Not specified. (When Not
specified is selected, the Module name field does not appear.)

¢ Definition file and Header file on the Model Explorer are blank.

Global Priority

This has the same priority as Read-Write (the lowest) priority. The settings
for this are the same as for Read-Write Priority, except

¢ The Data definition field on the Data Placement pane is set to Data
defined in single separate source file.

¢ The Data declaration field on the Data Placement pane is set to Data
declared in single separate header file.

The generated files that result are shown in the next figure. A subsystem’s
data objects of local or file scope are defined in the .c source file where the
subsystem’s functions are located (not shown). The data objects of global

5 Managing File Placement of Data Definitions and Declarations

scope are defined in another .c file (called global.c in the figure). The
declarations for the subsystem’s data objects of global scope are placed in a .h
file (called global.h).

For example, all data objects of local and file scope for subsys1 are defined
in subsys1.c. Signal ¢ in the model is an output of subsys1 and an input

to subsys2. So c is used by more than one subsystem and thus is a global

data object. Since global priority is in effect, the definition for ¢ (int c;) is
in global.c. The declaration for ¢ (extern int c;)is in global.h. Since
subsys2 uses (reads) c, #include "global.h" isin subsys2.c.

Model Generated Files
Results of Global Priority
a —»| subsys1|— subsys1.c subsys3.c
#include 'global.h'| | #include 'global.h'
c
subsys3|—» e
d > subsys2.c fuelsys.c
#include 'global.h'| |#include 'global.h’
b —» subsys2 |—
. global.c global.h
a -
int a; extern int a;
T T int b; extern int b;
fuelsys int c;. extern int c;
int d; extern int d;
int e; extern int e;

5-8

Priority and Usage

Definition File, Header File, and Ownership Priorities

While the Read-Write and Global priorities operate on all MPF-derived data
objects that you want defined in the generated code, the remaining priorities
allow you to override the Read-Write or Global priorities for one or more
particular data objects. There is a high-to-low priority among these remaining
priorities — Definition File, Header File, and Ownership — for a particular
data object, as shown in MPF Settings Priority and Usage on page 5-4

5 Managing File Placement of Data Definitions and Declarations

Ownership Settings

Ouwnership settings refers to the values specified for the Module naming and
Module names fields on the Data Placement pane of the Configuration
Parameters dialog box, and the Owner field of a data object in the Model
Explorer. These settings have no effect on what files are generated. Their
effects only have to do with definitions and extern statements. There are
five possible configurations, as shown in “Effects of Ownership Settings” on

page A-31.

5-10

Memory Section Settings

Memory Section Settings

Memory sections allow you to specify storage directives for a data object. As
shown in Parameter and Signal Property Values on page A-20, the possible
values for the Memory section property of a parameter or signal object are
Default, MemConst, MemVolatile or MemConstVolatile.

If you specify a filename for Definition file, and select Default, MemConst,
MemVolatile or MemConstVolatile for the Memory section property, the
Real-Time Workshop® Embedded Coder™ software generates a .c file and
an .h file. The .c file contains the definition for the data object with the
pragma statement or qualifier associated with the Memory section selection.
The .h file contains the declaration for the data object. The .h file can be
included, using the preprocessor directive #include, in any file that needs

to reference the data object.

You can add more memory sections. For more information, see “Designing

Custom Storage Classes and Memory Sections” and “Memory Sections” in the
Real-Time Workshop Embedded Coder User’s Guide.

5-11

5 Managing File Placement of Data Definitions and Declarations

Data Placement Rules

For a complete set of data placement rules in convenient tabular form, based
on the priorities discussed in this chapter, see “Data Placement Rules and
Effects” on page A-31.

5-12

Example Settings

Example Settings

In this section...

“Introduction” on page 5-13
“Read-Write Example” on page 5-15
“Ownership Example” on page 5-17
“Header File Example” on page 5-18

“Definition File Example” on page 5-20

Introduction

“Example Settings and Resulting Generated Files” on page A-32 provides
example settings for one data object of a model. Eight examples are listed so
that you can see the generated files that result from a wide variety of settings.
Four examples from this table are discussed below in more detail. These
discussions provide adequate information for understanding the effects of
any settings you might choose. For illustration purposes, the four examples
assume that we are dealing with an overall system that controls engine idle
speed.

The next figure shows that the software component of this example system
consists of two modules, IAC (Idle Air Control), and 10 (Input-Output).

5-13

5 Managing File Placement of Data Definitions and Declarations

TAC (Idle Air Control) Module 10 Module

(External to MPF)
Generated File for Chart spd_filt

Depends on MPF Settings /* Definitions*/
real T meas_spd = 0.0;

real T iac_cmd = 0.0;

Generated File for Chart iac_ctrl 10.h

/* External Data*/
extern real T meas_spd;
extern real_T iac_cmd;

Depends on MPF Settings

Engine Idle Speed Control System

The code in the I0 module controls the system’s IO hardware. Code is
generated only for the IAC module. (Some other means produced the code for
the 10 module, such as hand-coding.) So the code in IO is external to MPF,
and can illustrate legacy code. To simplify matters, the IO code contains one
source file, called I0.c, and one header file, called I0.h.

The IAC module consists of two Stateflow® charts, spd_filt and iac_ctrl.
The spd_filt chart has two signals (meas_spd) and filt_spd), and one
parameter (a). The iac_ctrl chart also has two signals (filt_spd and
iac_cmd) and a parameter (ref_spd). (The parameters are not visible in the
top-level charts.) One file for each chart is generated. This example system
allows us to illustrate referencing from file to file within the MPF module,
and model to external module. It also illustrates the case where there is no
such referencing.

5-14

Example Settings

=10]

File Edit Yiew Simulation Format Tools Help

Dlﬁné|%ﬁ|9Q|} II'IU.U INolmaI 'I|E

meas_sp@ fitt_spd

=pd_filt

Outz

iac_ctrl

Ready [1002% [[|odess v

Proceed to the discussion of the desired example settings:

e “Read-Write Example” on page 5-15

® “Ownership Example” on page 5-17

e “Header File Example” on page 5-18

¢ “Definition File Example” on page 5-20

Read-Write Example

These settings and the generated files that result are shown as Example
Settings 1 in “Example Settings and Resulting Generated Files” on page A-32.
As you can see from the table, this example illustrates the case in which only
one .c source file (for each chart) is generated.

So, for the TAC model, select the following settings. Accept the Data defined
in source file in the Data definition field and the Data declared in
source file in the Data declaration field on the Data Placement pane of
the Configuration Parameters dialog box. Accept the default Not specified
selection in the Module naming field. Accept the default blank settings for
the Owner, Definition file and Header file fields on the Model Explorer.
For Memory section, accept Default. Now the Read-Write priority is in

5-15

5 Managing File Placement of Data Definitions and Declarations

effect. Generate code. The next figure shows the results in terms of definition
and declaration statements.

TAC (Idle Air Control) Module 10 Module
______________ 1 (External to MPF)
Generated File for Chart spd_filt
r———_——_——_———— A
I0.c

spd_filt.c
/* Definitions*/
const real T a = 0.9;
real T filt spd = 0.0;
real_T meas_spd = 0.0;

/* Definitions*/
real_T meas_spd = 0.0;
real T iac_cmd = 0.0;

Generated File for Chart iac_ctrl 10.h

iac _ctrl.c
/* Definitions*/
const real T ref_spd = 0.0;
real T iac_cmd = 0.0;
/*Declarations*/
extern real T filt_spd;

/* External Data*/
extern real_T meas_spd;
extern real T iac_cmd;

Engine Idle Speed Control System (Read-Write Example)

The code generator generated a spd_filt.c for the spd_filt chart and
iac_ctrl.c for the iac_ctrl chart. As you can see, MPF placed all definitions
of data objects for the spd_filt chart in spd_filt.c. It placed all definitions
of data objects for the iac_ctrl chart in iac_ctrl.c.

However, notice real T filt_spd. This data object is defined in spd_filt.c
and declared in iac_ctrl.c. That is, since the Read-Write priority is in
effect, filt_spd is defined in the file that first writes to its address. And, it is
declared in the file that reads (uses) it. Further, real T meas_spd is defined
in both spd_filt.c and the external I0.c. And, real T iac_cmd is defined
in both iac_ctrl.c and IO.c.

5-16

Example Settings

Ownership Example

See tables “Effects of Ownership Settings” on page A-31 and “Example
Settings and Resulting Generated Files” on page A-32. In the “Read-Write
Example” on page 5-15, there are several instances where the same data
object is defined in more than one .c source file, and there is no declaration
(extern) statement. This would result in compiler errors during link time.
But in this example, we configure MPF Ownership rules so that adequate
linking can take place. Notice the Example Settings 2 row in “Example
Settings and Resulting Generated Files” on page A-32. Except for the
ownership settings, assume these are the settings you made for the model in
the IAC module. Since this example has no Definition file or Header file
specified, now Ownership takes priority. (If there were a Definition file or
Header file specified, MPF would ignore the ownership settings.)

On the Data Placement pane of the Configuration Parameters dialog box,
select User specified in the Module naming field, and specify IAC in the
Module name field (case sensitive). Open the Model Explorer (by issuing
the MATLAB® command daexplr) and, for all data objects except meas_spd
and iac_cmd, type IAC in the Owner field (case sensitive). Then, only for the
meas_spd and iac_cmd data objects, type IO as their Owner (case sensitive).
Generate code.

5-17

5 Managing File Placement of Data Definitions and Declarations

The results are shown in the next figure. Notice the extern real T meas_spd
statement in spd_filt.c, and extern real_T iac_cmdin iac_ctrl.c.
MPF placed these declaration statements in the correct files where these data
objects are used. This allows the generated source files (spd_filt.c and
iac_ctrl.c) to be compiled and linked with I0.c without errors.

TAC (Idle Air Control) Module 10 Module
______________ 1 (External to MPF)
Generated File for Chart spd_filt
. r———————— - .
spd_filt.c 10.c

/* Definitions*/

const real T a = 0.9;
real T filt_spd = 0.0;
/*Declarations*/
extern real_T meas_spd;

/* Definitions*/
real_T meas_spd = 0.0;
real T iac_cmd = 0.0;

Generated File for Chart iac_ctrl 10.h

iac _ctrl.c
/* Definitions*/
const real T ref_spd = 0.0;
/*Declarations*/
extern real T filt_spd;
extern real T iac_cmd;

/* External Data*/
extern real_T meas_spd;
extern real_T iac_cmd;

Engine Idle Speed Control System (Ownership Example)

Header File Example

These settings and the generated files that result are shown as Example
Settings 3 in “Example Settings and Resulting Generated Files” on page A-32.
Since this example has no Definition file specified, it allows us to describe
the effects of the Header file setting. (If there were a Definition file, MPF
would ignore the Header file setting.) The focus of this example is to show
how the Header file settings result in the linking of the two chart source files
to the external IO files, shown in the next figure. (Also, ownership settings
will be used to link the two chart files with each other.)

5-18

Example Settings

As you can see in the figure, the meas_spd and iac_cmd identifiers are defined
in I0.c and declared in I0.h. Both of these identifiers are external to the
generated .c files. You open the Model Explorer and select both the meas_spd
and iac_cmd data objects. For each of these data objects, in the Header file
field, specify I10.h, since this is where these two objects are declared. This
setting ensures that the spd_filt.c source file will compile and link with
the external I0.c file without errors.

Now we configure the ownership settings. In the Model Explorer, select the
filt spd data object and set its Owner field to IAC. Then, on the Data
Placement pane of the Configuration Parameters dialog box, select User
specified in the Module naming field, and specify IAC in the Module
Name field. This ensures that the spd_filt source file will link to the
iac_ctrl source file. Generate code. See the figure below.

TIAC (Idle Air Control) Module 10 Module
(External to MPF)

Generated File for Chart spd_filt
spd_filt.c

/* Includes*/

#include <IO.h>

/* Definitions*/

const real T a = 0.9;

real_T filt spd = 0.0;

/* Definitions*/
real_T meas_spd = 0.0;
real_T iac_cmd = 0.0;

I0.h

iac_ctrl.c

/* External Data*/
extern real T meas_spd;
extern real T iac_cmd;

/* Includes*/

#include <IO.h>

/* Definitions*/

const real T ref_spd = 0.0;
/* Declarations*/

extern real T filt spd;

|
|
|
|
|
|
|
|
|
: Generated File for Chart iac_ctrl
|
|
|
|
|
|
|
|
|

—————————— — — — — — — — — — —]

Engine Idle Speed Control System (Header File Example)

5-19

5 Managing File Placement of Data Definitions and Declarations

5-20

Since you specified the I0.h filename for the Header file field for the
meas_spd and iac_ctrl objects, the code generator assumed correctly that
their declarations are in I0.h. So the code generator placed #include I0.hin
each source file: spd_filt.c and iac_ctrl.c. So these two files will link with
the external 10 files. Also, due to the ownership settings that were specified,
the code generator places the real T filt spd = 0.0; definition in
spd_filt.c and declares the filt spd identifier in iac_ctrl.c with extern
real T iac_cmd;. Consequently, the two source files will link together.

Definition File Example

These settings and the generated files that result are shown as Example
Settings 4 in “Example Settings and Resulting Generated Files” on page A-32.
Notice that a definition filename is specified. The settings in the table only
apply to the data object called a. You have decided that you do not want this
object defined in spd_filt.c, the generated source file for the spd_filt
chart. (There are many possible organizational reasons one might want an
object declared in another file. It is not important for this example to specify
the reason.)

For this example, assume the settings for all data objects are the same as those
indicated in “Header File Example” on page 5-18, except for the data object a.
The description below identifies only the differences that result from this.

Open the Model Explorer, and select data object a. In the Definition file field
you specify any desired filename. Choose filter_ constants.c. Generate
code. The results are shown in the next figure.

Example Settings

TIAC (Idle Air Control) Module 10 Module
™ Generated File for Chart S?djf i1t | (External to MPF)
spd_filt.c —F—_————————— -

/* Includes*/

#include "IO.h"

#include "filter_constants.h"
/* Definitions*/

real_T filt spd = 0.0;

/* Definitions*/
real_T meas_spd = 0.0;
real_T iac_cmd = 0.0;

filter constants.c
/* Definitions */
const real T a = 0.9;

10.h

/* External Data*/
extern real T meas_spd;
extern real T iac_cmd;

global.h

/* Declarations */
extern real_T a;

Generated File for Chart iac_ctrl
iac_ctrl.c

/* Includes*/

#include <IO.h>

/* Definitions*/

constr real_T ref_spd = 0.0;

/* Declarations*/

extern real T filt_ spd;

extern real_T iac_cmd;

Engine Idle Speed Control System (Definition File Example)

The code generator generates the same files as in the “Header File Example”
on page 5-18, and adds a new file, filter_constants.c. Data object a now is
defined in filter_constants.c, rather than in the source file spd_filt.c,
as it is in the example. This data object is declared with an extern statement
in global.h

5-21

5 Managing File Placement of Data Definitions and Declarations

5-22

Reference Tables

MPF Panes on the Configuration
Parameters Dialog Box (p. A-2)

MPF Template Symbols and Rules
(p. A-10)

mpt Parameter and Signal
Properties (p. A-19)

Data Placement Rules and Effects
(p. A-31)

Lists and describes elements

on MPF-related panes of the
Configuration Parameters dialog
box.

Lists and describes all MPF template
symbols and rules.

Lists and describes mpt parameter
and signal properties and property
values, and illustrates how changing
these affect the generated code.

Shows the effects that changes to the
interdependent MPF settings have

on the generated code and provides a
complete set of data placement rules.

A Reference Tables

A-2

MPF Panes on the Configuration Parameters Dialog Box

The following tables define elements on each MPF-related pane on the
Configuration Parameters dialog box. Elements that are not related to MPF
are not described. Select Real-Time Workshop on the Select pane.

MPF Elements on Configuration Parameters Panes

Pane Element Description
General Ignore custom storage | To make module packaging features available, this
classes check box must be cleared.
Comments Simulink® data object | When this check box is selected, and you type text in
descriptions the Description field of the Model Explorer, that text
will appear beside the signal’s or parameter’s identifier
in the generated code as a comment.
Custom comments | When selected, this check box allows you to add a
(MPT objects only) | comment above a signal or parameter’s identifier in the
generated code. You control the content of the comment
by writing a function in M-code (.m file) or TLC-code
(.tlc file), and specifying its filename in the Custom
comments function field.
Custom comments | In this field, you specify the .m filename or .tlc
function filename that contains the function mentioned just
above. This field is available only when the Custom
comments (MPT objects only) check box is selected.
Symbols #define naming This rule applies only to those parameters whose storage

class you selected as Define in “Creating mpt Data
Objects with Data Object Wizard” on page 3-13. Allows
you to specify one rule by which all of these parameters
change the same way. Then, they appear as identifiers
in the generated code as you want.

MPF Panes on the Configuration Parameters Dialog Box

MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

For example, in “Creating mpt Data Objects with Data
Object Wizard” on page 3-13, a parameter is named
parama. For this parameter, you specified Define
(Custom) in the Storage class field of the Model
Explorer, and you specified its Value property as "1."
So, in terms of ANSI® C/C++ syntax, you have said
#define parama 1;. Now you select Force upper case
in the #define naming field of the Symbols pane of the
Configuration Parameters dialog box. The result of all
of this is as follows. "PARAMA" appears in the generated
code file every time this parameter name appears. In
the compiled executable file, "1" appears every time
"PARAMA" appears in the generated code file.

In the #define naming field, select Custom M-function
to write your own naming rule that changes all of these
parameter names in the model to identifiers in the
generated code, in the same way. Then you must write
an M-function to accomplish this. For details on writing
a MATLAB® function, see “Functions” in the MATLAB
documentation.

Of course, there is a wide variety of possibilities. Some
examples are
¢ Remove all underscore characters in all signal names

® Add underscores before a capital letter in all
parameter names

® Make all identifiers in the generated code uppercase

5. ANSI is a registered trademark of the American National Standards Institute, Inc.

A-3

A Reference Tables

MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description

Then you save the function as a .m file, place it in any
folder in the MATLAB path, and type its filename in the
M-function field under the #define naming field.

Select Force upper case or Force lower case to
change case as desired.

Select None to make no change to the #define names.
With this selection, after code generation, all of them
will appear as identifiers in the source code exactly as
they appear in the model.

M-function If you selected Custom M-function in the #define
naming field, place the name of the .m file here, with or
without the .m extension. Otherwise, ignore this field.

Parameter naming | Allows you to specify one rule by which all of the model’s
parameter names change the same way, so that they
appear as identifiers in the generated code as you want.
The selections in this field have the same functions

as described above for #defines, except they apply to
parameter names.

M-function If you selected Custom M-function in the Parameter
naming field, place the name of the .m file here, with or
without the .m extension. Otherwise, ignore this field.

Signal naming Allows you to specify one rule by which all of the model’s
signal names change the same way, so that they appear
as identifiers in the generated code as you want. The
selections in this field have the same functions as
described above for #defines, except they apply to
signal names.

M-function If you selected Custom M-function in the Signal
naming field, place the name of the .m file here, with or
without the .m extension. Otherwise, ignore this field.

Templates Code templates A code template organizes all of the generated files that,
primarily, contain functions but not identifiers.

A4

MPF Panes on the Configuration Parameters Dialog Box

MPF Elements on Configuration Parameters Panes (Continued)

Pane

Element

Description

Source file (*.c¢)
template

The source code template organizes C code files. These
include, for example, the main .c or any of the .c
files that contain functions that Real-Time Workshop®
Embedded Coder™ software generates for the open
model.

Header file (*.h)
template

The header code template organizes the .h file that
includes the prototypes of these functions. (See Source
file (*.c) template just above.)

Data templates

A data template organizes all of the generated files that
contain only identifiers (data), not functions (code).

Source file (*.c)

The source data template organizes the .c file that

template contains definitions of variables of global scope.
Header file (*.h) The header data template organizes the .h file that can
template contain declarations of variables of global scope. (See

Source file (*.c) template just above.)

Custom templates

A custom template is a TLC callback script that allows
you to customize generated code. The supplied (default)
code template is example file process.tlc. You
must uncomment a TLC line, as explained near the top
of the file, to apply the script to generated code. You
can modify example file process.tlc to create your
own custom template. For details, see “Custom File
Processing” in the Real-Time Workshop Embedded
Coder documentation.

A-5

A Reference Tables

MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description
Data Data definition In this field, you select the .c file where the definitions
Placement of variables of global scope will be located. You can place

these in a single .c file that is separate from the .c files
where the model’s functions are located, if desired.

If you choose Data defined in single separate
source file, the data source template specified in the
Source file (*.c) template field of the Templates
pane (for Data templates) will be used. This template
file organizes the single separate source file. You must
also specify the filename of this single separate source
file itself in the Data definition filename field below.

Or, you can place these definitions in the .c files where
the functions are located. To do this you select Data
defined in source file. In this case, the source
template will not be used. There may be one function

. ¢ file or multiple function .c files, based on the file
partitioning previously selected for the model. If there
are multiple files, and you select Data defined in
source file, all of the definitions will be placed in
their respective function files.

If you choose the default Auto, Real-Time Workshop
Embedded Coder software determines where the
definitions will be located.

Data definition This field is available only if you selected Data defined

filename in single separate source file in the Data
definition field. Specify here the name of this source
file.

MPF Panes on the Configuration Parameters Dialog Box

MPF Elements on Configuration Parameters Panes (Continued)

Pane

Element

Description

Data declaration

In this field, you select the file where declarations will
be located (extern, typedef and #define statements).
You can place these in a single .h file that is separate
from the . c files where the model’s functions are located,
if desired.

If you choose Data declared in single separate
header file, the data header template specified in the
Header file (*.h) template field of the Templates
pane (for Data templates) will be used. This template
file organizes the single separate header file. You must
also specify the filename of this single separate header
file itself in the Data declaration filename field below.

Or, you can place these declarations in the .c files
where the functions are located. To do this you select
Data declared in source file. In this case, the
data header template will not be used. As mentioned
previously, there may be one function .c file or
multiple function .c files, based on the file partitioning
previously selected for the model. If there are multiple
files, and you select Data declared in source file,
all of the declarations will be placed in their respective
function files.

If you choose the default Auto, Real-Time Workshop
Embedded Coder software determines where the
declarations will be located.

Data declaration
filename

This field is available only if you selected Data
declared in single separate header file in the
Data declaration field. Specify here the name of this
header file.

A-7

A Reference Tables

MPF Elements on Configuration Parameters Panes (Continued)

Pane Element Description
#include file This field allows you to select the #include file delimiter
delimiter used in those generated files that contain the #include

preprocessor directive for mpt data objects. This applies
the selected delimiter to all mpt data objects, except any
whose delimiter is overridden by the Header file field
on the Model Explorer.

If you select Auto, Real-Time Workshop Embedded
Coder software determines the delimiter.

If you select #include "header.h", the
double-quotation delimiter is used.

If you select #include <header.h>, the angle-bracket
delimiter is used.

Module naming In this field, you select whether or not to name the
module. This is used in conjunction with the Owner
field of a data object in the Model Explorer to constitute
what is termed "ownership." For details, see “Ownership
Settings” on page 5-10 and “Effects of Ownership
Settings” on page A-31.

If you do want to specify the module name, you can
select the convenient Same as model. This avoids
having to type in a name in the Module name field
described below.

Module name This field is available only if you selected User
specified in the Module naming field. Type the
desired module name according to ANSI C/C++
conventions for naming identifiers.

A-8

MPF Panes on the Configuration Parameters Dialog Box

MPF Elements on Configuration Parameters Panes (Continued)

Pane

Element

Description

Signal display level

This field allows you to specify whether or not the
code generator declares a signal data object as global
data in the generated code. The number you specify in
this field is relative to the number you specify in the
Persistence level field in the Module Explorer. The
Signal display level number is for all mpt signal data
objects in the model. The Persistence level number is
for a particular mpt signal data object.

Parameter tune
level

This field allows you to specify whether or not the code
generator declares a parameter data object as tunable
global data in the generated code. The number you
specify in this field is relative to the number you specify
in the Persistence level field in the Module Explorer.
The Parameter tune level number is for all mpt
parameter data objects in the model. The Persistence
level number is for a particular mpt parameter data
object.

A-9

A Reference Tables

MPF Template Symbols and Rules

A-10

In this section...

“Introduction” on page A-10
“Template Symbol Groups” on page A-10
“Template Symbols” on page A-13

“Rules for Modifying or Creating a Template” on page A-17

Introduction

“Template Symbol Groups” on page A-10 and “Template Symbols” on page
A-13 describe MPF template symbols and rules for using them. The location
of a symbol in one of the supplied template files (code_c_template.cgt,
code_h_template.cgt, data_c_template.cgt, or data_h_template.cgt)
determines where the items associated with that symbol are located in

the corresponding generated file. “Template Symbol Groups” on page A-10
identifies the symbol groups, starting with the parent (“Base”) group, followed
by the children of each parent. “Template Symbols” on page A-13 lists the
symbols alphabetically.

Template Symbol Groups

Symbol Group Symbol Names in This Group

Base (Parents) Declarations
Defines
Definitions
Documentation
Enums
Functions
Includes

Types

MPF Template Symbols and Rules

Symbol Group

Symbol Names in This Group

Declarations

ExternalCalibrationLookup1D
ExternalCalibrationLookup2D
ExternalCalibrationScalar

ExternalVariableScalar

Defines

LocalDefines

LocalMacros

Definitions

FilescopeCalibrationLookupiD
FilescopeCalibrationLookup2D
FilescopeCalibrationScalar
FilescopeVariableScalar
GlobalCalibrationLookup1D
GlobalCalibrationLookup2D
GlobalCalibrationScalar

GlobalvVariableScalar

A-11

A Reference Tables

Symbol Group Symbol Names in This Group

Documentation Abstract

Banner

Created

Creator

Date
Description
FileName
History
LastModificationDate
LastModifiedBy
ModelName
ModelVersion
ModifiedBy
ModifiedComment
ModifiedDate

Modified History

Notes

ToolVersion

Functions CFunctionCode

Types This parent has no children.

A-12

MPF Template Symbols and Rules

Template Symbols

Symbol Name*

Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

Abstract

Documentation

N/A

User-supplied description of
the model or file. Placed in
the generated file based on
the Stateflow® note, Simulink®
annotation, or DocBlock on the
model.**

Banner

Documentation

N/A

Comments located near top of
the file. Contains information
that includes model and
Real-Time Workshop®
versions, and date file was
generated.

CFunctionCode

Functions

File

All of the C/C++ functions.
Must be at the bottom of the
template.

Created

Documentation

N/A

Date when model was created.
From Created on field on
Model Properties dialog box.

Creator

Documentation

N/A

User who created model. From
Created by field on Model
Properties dialog box.

Date

Documentation

N/A

Date file was generated. Taken
from computer clock.

Declarations

Base

Data declaration of any signal
or parameter. For example,
extern real_T globalvar;.

Defines

Base

File

Any necessary #defines of .h
files.

Definitions

Base

File

Data definition of any signal
or parameter.

A-13

A Reference Tables

Symbol Description

Symbol Symbol | (What the symbol puts in
Symbol Name* Group Scope the generated file)
Description Documentation | N/A Description of model. From
Model description field on
Model Properties dialog box.**
Documentation Base N/A Comments about how to
interpret the Real-Time
Workshop generated files.
Enums Base File Enumerated data type
definitions.
ExternalCalibrationLookupiD | Declarations External | *#*
ExternalCalibrationLookup2D | Declarations External | **%*
ExternalCalibrationScalar Declarations External | *#*
ExternalVariableScalar Declarations External | ***
FileName Documentation | N/A Name of the generated file.
FilescopeCalibrationLookup1D | Definitions File SR
FilescopeCalibrationLookup2D | Definitions File RS
FilescopeCalibrationScalar Definitions File SRES
FilescopeVariableScalar Definitions File S
Functions Base File Generated function code.
GlobalCalibrationLookupiD Definitions Global RS
GlobalCalibrationLookup2D Definitions Global SRS
GlobalCalibrationScalar Definitions Global bl
GlobalVariableScalar Definitions Global olot
History Documentation | N/A User-supplied revision history

of the generated files. Placed
in the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model. **

A-14

MPF Template Symbols and Rules

Symbol Name*

Symbol
Group

Symbol
Scope

Symbol Description
(What the symbol puts in
the generated file)

Includes

Base

File

#include preprocessor

directives.

LastModificationDate

Documentation

N/A

Date when model was last
saved. From Last saved
on field on Model Properties

dialog box.

LastModifiedBy

Documentation

N/A

User who last saved model.
From Last saved by field on
Model Properties dialog box.

LocalDefines

Defines

File

#define preprocessor

directives from

code-generation data

dictionary.

LocalMacros

Defines

File

C/C++ macros local to the file.

ModelName

Documentation

N/A

Name of the model.

ModelVersion

Documentation

N/A

Version number of the

Simulink model.

ModifiedBy

Documentation

N/A

Name of user who last
modified the model. From
Model version field on Model
Properties dialog box.

ModifiedComment

Documentation

N/A

Comment user enters in the
Modified Comment field on
the Log Change dialog box.
See “Creating a Model Change
History” in the Simulink

documentation.

ModifiedDate

Documentation

N/A

Date model was last modified
before code was generated.

A-15

A Reference Tables

Symbol Name*

Symbol Description
Symbol Symbol | (What the symbol puts in
Group Scope the generated file)

ModifiedHistory

Documentation | N/A Text from Modified history
field on Model Properties
dialog box.**

Notes

Documentation | N/A User-supplied miscellaneous
notes about the model or
generated files. Placed in

the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

ToolVersion

Documentation | N/A A list of the versions of the
toolboxes used in generating
the code.

Types

Base Data types of generated code.

A-16

* All symbol names must be enclosed between %< >. For example,
%s<Functions>.

** This symbol can be used to add a comment to the generated files. See
“Adding Global Comments” on page 4-6. The code generator places the
comment in each generated file whose template has this symbol name. The
code generator places the comment at the location that corresponds to where
the symbol name is located in the template file.

*#% The description can be deduced from the symbol name. For example,
GlobalCalibrationScalar is a symbol that identifies a scalar. It contains
data of global scope that you can calibrate .

MPF Template Symbols and Rules

Rules for Modifying or Creating a Template

The following are the rules for creating any MPF template. “Comparison of
a Template and Its Generated File” on page 2-10 illustrates several of these
rules.

1 Place a symbol on a template within the %< > delimiter. For example, the
symbol named Includes should look like this on a template: %<Includes>.
Note that symbol names are case sensitive.

2 Place a symbol on a template where desired. Its location on the template
determines where the item associated with this symbol is located in the
generated file. If no item is associated with it, the symbol is ignored.

3 Place a C/C++ statement outside of the %< > delimiter, and on a different
line than a %< > delimiter, for that statement to appear in the generated
file. For example, #pragma message ("'my text") in the template results
in #pragma message ("my text") at the corresponding location in the
generated file. Note that the statement must be compatible with your
C/C++ compiler.

4 Use the .cgt extension for every template filename. ("cgt" stands for code
generation template.)

5 Note that %% $Revision: 1.1.4.10.4.1 $ appears at the top of the
MathWorks™ supplied templates. This is for internal MathWorks use
only. It does not need to be placed on a user-defined template and does
not show in a generated file.

6 Place a comment on the template between /* */ as in standard ANSI®® C.
This results in /*comment*/ on the generated file.

7 Each MPF template must have all of the Base group symbols, in predefined
order. They are listed in “Template Symbol Groups” on page A-10. Each
symbol in the Base group is a parent. For example, Declarations is a
parent symbol.

8 Each symbol in a non-Base group is a child. For example, LocalMacros is
a child.

6. ANSI is a registered trademark of the American National Standards Institute, Inc.

A-17

A Reference Tables

A-18

9 Except for Documentation children, all children must be placed after their
parent, before the next parent, and before the Functions symbol.

10 Documentation children can be located before or after their parent in any
order anywhere in the template.

11 If a non-Documentation child is missing from the template, the code
generator places the information associated with this child at its parent
location in the generated file.

12 If a Documentation child is missing from the template, the code generator
omits the information associated with that child from the generated file.

mpt Parameter and Signal Properties

mpt Parameter and Signal Properties

The following table describes the properties and property values for all
mpt.Parameter and mpt.Signal data objects that appear on the Model
Explorer.

Note The workspace in which you can create an mpt object depends on its
type. You can create mpt.Signal objects in the base MATLAB® workspace
only. You can create mpt.Parameter objects in the base MATLAB workspace
or a model workspace. However, if you create the object in a model workspace,
the object’s storage class must be auto.

The figure below shows an example of the Model Explorer. When you select an
mpt.Parameter or mpt.Signal data object in the middle pane, its properties
and property values display in the right-most pane.

In the Properties column, the table lists the properties in the order in which

they appear on the Model Explorer. Another table describes the effects that
example changes to property values have on the generated code.

A-19

A Reference Tables

=IBix|
File Edit View Tools Add Help
IDs =X |BH=%5817fove @An+wlsazad
H Search: |by Name ;I Mame: |\ %’ Search
Model Hierarchy ICuntEnIsuF: Base Workspace mpt.Signak: A
- [E¥]simulink Root . =
e e o] 215 Ho»
&rtwdemo_mof auto 2 Dimensions: -1 Complexity: [suto =
2T 2 : |- ample mode: |aul hd
e ; Sample time: [-1 Sample mode: [auto =
suto 6 Minimum: | -Inf Maximum: |Inf
aute 26 itial value: | Units: [
auto 9
e —Code generation option:
auto Storage dass: [Global (Custom) =]
auto Custom attribute:
auto)
auto Memary section: |Dafault j
auto Header file: |
auto Owner: [
U Definition file: |
auto
Persistence level: [1
Aliss: |
Description:
1 - i
1| |_>| Contents Search Results IS Help Aoy
4
Parameter and Signal Property Values
Class: Available
Parameter, Property Values
Signal, or (* Indicates
Both Property Default) Description
Both User object *auto Prenamed and predefined property

type

sets that are registered in the

sl customization.m file. (See
“Registering mpt User Object Types” on
page 3-41.) This field is unavailable if
no user object type is registered.

Select auto if this field is available but
you do not want to apply the properties
of a user object type to a selected data
object. The fields on the Model Explorer
are populated with default values.

A-20

mpt Parameter and Signal Properties

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both

Property

Available
Property Values
(* Indicates
Default)

Description

Any user object type
name listed

Select a user object type name to
apply the properties and values that
you associated with this name in the
sl customization.m file. The fields on
the Model Explorer are automatically
populated with those values.

Parameter

Value

*0

The data type and numeric value of

the data object. For example, int8(5).
The numeric value is used as an initial
parameter value in the generated code.

Both

Data type

Used to specify the data type for an
mpt.Signal data object, but not for an
mpt.Parameter data object. The data
type for an mpt.Parameter data object
is specified in the Value field above.
See “Working with Data Types” in the
Simulink® documentation.

Both

Units

*null

Units of measurement of the signal or
parameter. (Enter text in this field.)

Both

Dimensions

The dimension of the signal or
parameter. For a parameter, the
dimension is derived from its value.

Both

Complexity

*auto
real

complex

Complexity specifies whether the signal
or parameter is a real or complex
number. Select auto for the code
generator to decide. For a parameter,
the complexity is derived from its value.

Signal

Sample time

*-1

Model or block execution rate.

A-21

A Reference Tables

Parameter and Signal Property Values (Continued)

Class: Available

Parameter, Property Values

Signal, or (* Indicates

Both Property Default) Description

Signal Sample mode *auto Determines how the signal propagates
through the model. Select auto for the
code generator to decide.

Sample based The signal propagates through the
model one sample at a time.

Frame based The signal propagates through the
model in batches of samples.

Both Minimum *0.0 The minimum value to which the
parameter or signal is expected to be
bound.

Any number within
the minimum range
of the parameter
or signal. (Based
on the data type
and resolution of
the parameter or
signal.)

Both Maximum *0.0 Maximum value to which the parameter
or signal is expected to be bound. (Enter
information using a dialog box.)

Code
generation
options

Storage class

Note that an auto selection for a storage
class tells the Real-Time Workshop®
build process to decide how to declare
and store the selected parameter or

signal.

A-22

mpt Parameter and Signal Properties

Parameter and Signal Property Values (Continued)

Class: Available
Parameter, Property Values
Signal, or (* Indicates
Both Property Default) Description
Both Default Real-Time Workshop® Embedded
(Custom) Coder™ software decides how to declare
the data object.
Both Global Global (Custom) is | Ensures that the code generator
(Custom) the default storage | places no qualifier in the data object’s
class for mpt data declaration.
objects.
Both Memory *Default Memory section allows you to specify
section storage directives for the data object.
Default ensures that the code generator
places no type qualifier and no pragma
statement with the data object’s
declaration.
Parameter MemConst Places the const type qualifier in the
declaration.
Both MemVolatile Places the volatile type qualifier in
the declaration.
Parameter MemConstVolatile | Places the const volatile type

qualifier in the declaration.

A-23

A Reference Tables

Parameter and Signal Property Values (Continued)

Class:
Parameter,
Signal, or
Both

Property

Available
Property Values
(* Indicates
Default)

Description

Both

Header file

Name of the file used to import or export
the data object. This file contains the
declaration (extern) to the data object.

Also, you can specify this header
filename between the double-quotation
or angle-bracket delimiter. You can
specify the delimiter with or without the
.h extension. For example, "object.h"
or "object" has the same effect. For
the selected data object, this overrides
the general delimiter selection in the
#include file delimiter field on the
Configuration Parameters dialog box.

Both

Owner

*Blank

The name of the module that owns this
signal or parameter. This is used to help
determine the ownership of a definition.
For details, see “Ownership Settings”
on page 5-10 and “Effects of Ownership
Settings” on page A-31.

Both

Definition file

*Blank

Name of the file that defines the data
object.

Any valid text string

A-24

mpt Parameter and Signal Properties

Parameter and Signal Property Values (Continued)

Class: Available
Parameter, Property Values
Signal, or (* Indicates
Both Property Default) Description
Both Persistence The number you specify is relative to
level Signal display level or Parameter
tune level on the Data Placement
pane of the Configuration Parameters
dialog box. For a signal, allows you
to specify whether or not the code
generator declares the data object as
global data. For a parameter, allows
you to specify whether or not the code
generator declares the data object as
tunable global data. See Signal display
level and Parameter tune level in
MPF Elements on Configuration
Parameters Panes on page A-2.
Both Bitfield Embeds Boolean data in a named bit
(Custom) field.
Struct name Name of the struct into which the
object’s data will be packed.
Parameter Const (Custom) Places the const type qualifier in the
declaration.
Parameter Header file See above.
Parameter Owner See above.
Parameter Definition file See above.
Parameter Persistence See above.
level
Both Volatile Places the volatile type qualifier in
(Custom) the declaration.
Both Header file See above.

A-25

A Reference Tables

Parameter and Signal Property Values (Continued)

Class: Available

Parameter, Property Values

Signal, or (* Indicates

Both Property Default) Description

Both Owner See above.

Both Definition file See above.

Both Persistence See above.
level

Parameter ConstVolatile Places the const volatile type
(Custom) qualifier in declaration.

Parameter Header file See above.

Parameter Owner See above.

Parameter Definition file See above.

Parameter Persistence See above.
level

Parameter Define Represents parameters with a #define
(Custom) macro.

Parameter Header file See above.

Both ExportToFile Generates global variable definition,
(Custom) and generates a user-specified header

(.h) file that contains the declaration
(extern) to that variable.

Both Memory See above.
section

Both Header file See above.

Both Definition file See above.

A-26

mpt Parameter and Signal Properties

Parameter and Signal Property Values (Continued)

Class: Available

Parameter, Property Values

Signal, or (* Indicates

Both Property Default) Description

Both ImportFromFile Includes predefined header files

(Custom) containing global variable declarations,
and places the #include in a
corresponding file. Assumes external
code defines (allocates memory) for the
global variable.

Both Data access *Direct Allows you to specify whether the
identifier that corresponds to the
selected data object stores data of a data
type (Direct) or stores the address of
the data (a pointer).

Both Pointer If you select Pointer, the code generator
places * before the identifier in the
generated code.

Header file See above.

Both Struct Embeds data in a named struct to

(Custom) encapsulate sets of data.

Both Struct name See above.

Signal GetSet Reads (gets) and writes (sets) data using

(Custom) functions.

Signal Header file See above.

Signal Get function Specify the Get function.

Signal Set function Specify the Set function.

A-27

A Reference Tables

Parameter and Signal Property Values (Continued)

Class: Available
Parameter, Property Values
Signal, or (* Indicates
Both Property Default) Description
Both Alias *null As explained in detail in “Applying
Naming Rules to Identifiers Globally”
on page 3-22, for a Simulink or mpt data
object (identifier), specifying a name
in the Alias field overrides the global
naming rule selection you make on the
Configuration Parameters dialog box.
Any valid ANSI®’
C/C++ variable
name
Both Description *null Text description of the parameter or

signal. Appears as a comment beside
the signal or parameter’s identifier in
the generated code.

Any text string

A-28

7. ANSI is a registered trademark of the American National Standards Institute, Inc.

mpt Parameter and Signal Properties

Some Examples of the Effect of Property Value Changes on Generated Code

What | noticed when
inspecting the .c/.cpp file

Change | made to property
value settings

What | noticed after
regenerating and
reinspecting the file

Example 1:

Parameter data objects can
be declared or defined as
constants. I know that

the data object GAIN is a
parameter. I want this to
be declared or defined in the
.c file as a variable. But I
notice that GAIN is declared as
a constant by the statement
const real T GAIN = 5.0;.
Also, this statement is in the
constant section of the file.

In the Model Explorer, I clicked
the data object GAIN. I noticed
that the property value for its
Memory section property is set
at MemConst. I changed this to
Default.

I notice two differences. One
is that now GAIN is declared
as a variable with the
statement real T GAIN =
5.0;. The second difference
is that the declaration now
is located in the MemConst
memory section in the .c or
.cpp file.

Example 2:

I notice again the declaration
of GAINin the . c file mentioned
in Example 1. It appears as
real T GAIN = 5.0;. But

I have changed my mind. I
want data object GAIN to be
#define.

I changed the Storage class
selection to Define (Custom).

GAIN is no longer declared
in the .c file as a MemConst
parameter. Rather, it now is
defined as a #define macro
by the code #define GAIN
5.0, and this is located
near the top of the .c file
with the other preprocessor
directives.

A-29

A

Reference Tables

Some Examples of the Effect of Property Value Changes on Generated Code (Continued)

What | noticed when
inspecting the .c/.cpp file

Change | made to property
value settings

What | noticed after
regenerating and
reinspecting the file

A-30

Example 3:

I changed my mind again
after doing Example 2. I

do want GAIN defined using
the #define preprocessor
directive. But I do not want
to include the #define in this
file. I know it exists in another
file and I want to reference
that file.

On the Model Explorer, I notice
that the property value for the
Header file property is blank.

I changed this to filename.h.

(I chose the ANSI C/C++
double quote mechanism for the
#include, but could have chosen
the angle bracket mechanism.)
Also, it is necessary that I make
the user-defined filename.h
available to the compiler, placing
it either in the system path or
local directory.

The #define GAIN 5.0 is
no longer in this .c file.
Instead, the #include
filename.h code appears as
a preprocessor directive at
the top of the file.

Example 4:

I have one more change I
want to make. Let us say that
we have declared the data
object data_in, and that its
declaration statement in the
.c file reads

real T data_in = 0.0;. 1
want to replace this in all
locations in the .c file with an
alias.

In the Model Explorer, I selected
the data object data_in. I
noticed that the Alias field

is blank. I changed this to
data_in_alias, which I know
is a valid ANSI C/C++ variable

name.

The identifier
data_in_alias now appears
in the .c file everywhere
data_in appeared.

Data Placement Rules and Effects

Data Placement Rules and Effects

In this section...

“Effects of Ownership Settings” on page A-31
“Example Settings and Resulting Generated Files” on page A-32
“Data Placement Rules” on page A-34

Effects of Ownership Settings

Row Module Naming

Number | Setting Owner Setting Effect*

1 Not specified™®* Blank** There is a definition for the selected
data object. The code generator
places this definition in the .c/.cpp
source file that uses it. There is also
an extern declaration for this data
object. The code generator places
this extern declaration in one or
more .h header files, as needed.

2 Not specified** A name is specified. | Same effect as stated above.

Either Same as model Blank** Same as Row 1.
or User specified is
selected.
4 Either Same as model A name is specified | Same as Row 1.
or User specified is and it is the same
selected, and this name | as that specified
is the same as that in the Module
specified as the Owner naming > Module
property. name field.
5 Either Same as model A name is specified | There is no definition for the

or User specified is
selected, and this name
is different than that
specified as the Owner

property.

but it is different
from that specified
in the Module
naming > Module
name field.

selected data object. However,
there is an extern declaration for
the object. The extern declaration
is placed in one or more header
files, as needed.

A-31

A Reference Tables

* See also “Ownership Settings” on page 5-10.

** Default.

Example Settings and Resulting Generated Files

Data Data
Defined Declared | Owner- | Defined | Header
In... In... ship* File** File Generated Files
Example Source file | Source file | Blank Blank Blank .c/.cpp source file
Settings 1
(Rd-Write
Example)
Example Source file | Source file | Name of | Blank Blank .c/.cpp source file
Settings 2 module
(Owner- ship specified
Example)
Example Source file | Source file | Blank Blank Desired | .c/.cpp source file
Settings 3 include . h definition file
(Header File filename
Example) specified.
Example Source file | Source file | Blank Desired Desired | .c/.cpp source file
Settings 4 definition | include | .c/.cpp definition
(Def. File filename | filename | file*
Example) specified. | specified.| .h definition file*
Example Single Source file | Blank Blank Blank .c/.cpp source file
Settings 5 separate global .c/.cpp
source file
Example Single Single Blank Blank Blank .c/.cpp source file
Settings 6 separate separate global .c/.cpp
source file | header file global.h

A-32

Data Placement Rules and Effects

Data Data

Defined Declared | Owner- | Defined | Header

In... In... ship* File** File Generated Files
Example Single Single Name of | Blank Blank .c/.cpp source file
Settings 7 separate separate module global.c/.cpp

source file | header file | specified global.h
Example Single Single Blank Blank Desired | .c/.cpp source file
Settings 8 separate separate include | global.c/.cpp

source file | header file filename | global.h

specified.| . h definition file

* "Blank" in ownership setting means Not specified is selected in the

Module naming field on the Data Placement pane, and the Owner field on

the Model Explorer is blank. "Name of module specified" can be a variety of

ownership settings as defined in “Effects of Ownership Settings” on page A-31.

** The code generator generates a definition .c/.cpp file for every data object
for which you specified a definition filename (unless you selected #DEFINE for

the Memory section field). For example, if you specify the same definition
filename for all data objects, only one definition .c/.cpp file is generated.
The code generator places declarations in model.h by default, unless you
specify Data declared in single separate header file for the Data

declaration option on the Real-Time Workshop > Data Placement pane

of the Configuration Parameter dialog box. If you select that data placement
option, the code generator places declarations in global.h. If you specify a
definition filename for each data object, the code generator generates one

definition .c/.cpp file for each data object and places declarations in model.h

by default, unless you specify Data declared in single separate header

file for Data declaration. If you select that data placement option, the code

generator places declarations in global.h.

A-33

A Reference Tables

Note If you generate C++ rather than C code, the .c files listed in the
following table will be .cpp files.

Data Placement Rules

A-34

Global Override Settings for
Settings: Specific Data Object: Results in Generated Files:
Where |(Where

Storage Class |Data |Data | Def. Header |Data Data Dec.

Setting Def. |Dec. |File Owner File Def. Is |Dec. Is |Inclusion

mpt or Simulink® Noncustom Storage Classes:

auto N/A N/A N/A N/A N/A Note 12 |model.h |Note 1

Exported-Global | N/A N/A N/A N/A N/A model.c |model.h |[Notel

Imported- - N/A N/A N/A N/A N/A None. model - |Note 2

Extern, External |private.h

Imported- -

Extern-Pointer

Simulink-Global | N/A N/A N/A N/A N/A Note 13 |model.h |Note 1

mpt or Simulink Custom Storage Class: Imported Data:

Imported- - D/C D/C D/C N/A null None model - |Note 3

FromFile private.h

Imported- - D/C D/C D/C N/A hdr.h None model - |Note 4

FromFile private.h

Simulink Custom Storage Class: #define Data:

Define D/C D/C N/A N/A N/A N/A #define, |Note 5
model.h

mpt Custom Storage Class: #define Data:

Define D/C D/C N/A N/A null N/A #define, |Note 5
model.h

Define D/C D/C N/A N/A hdr.h N/A #define, |Note 6
model.h

mpt or Simulink Custom Storage Class: GetSet:

GetSet D/C D/C N/A N/A hdr.h N/A External |Note 4
hdr.h

Data Placement Rules and Effects

Global Override Settings for
Settings: Specific Data Object: Results in Generated Files:
Where |Where

Storage Class Data Data | Def. Header |Data Data Dec.
Setting Def. |Dec. [File | Owner File Def. Is |Dec. Is |Inclusion
mpt or Simulink Custom Storage Class: Bitfield, Struct:
Bitfield, Struct D/C |D/C |N/A |N/A | N/A [model.c [model.h [Note 7
mpt Custom Storage Class: Global, Const, ConstVolatile, Volatile:
Global, Const, auto |auto |null null or |null model.c |model.h |[Notel
Const-Volatile, locally
Volatile owned
Global, Const, src auto |null null or |null src.c model.h |Note 1
Const-Volatile, locally
Volatile owned
Global, Const, sep auto |null null or |null glb.c model.h |Note 1
Const-Volatile, locally
Volatile owned
Global, Const, |auto |[src null null or |null model.c |src.c Note 8
Const-Volatile, locally
Volatile owned
Global, Const, src src null null or |null src.c src.c Note 8
Const-Volatile, locally
Volatile owned
Global, Const, sep src null null or null glb.c src.c Note 8
Const-Volatile, locally
Volatile owned
Global, Const, auto |sep null null or |null model.c |glb.h Note 9
Const-Volatile, locally
Volatile owned
Global, Const, src sep null null or |null src.c glb.h Note 9
Const-Volatile, locally
Volatile owned
Global, Const, sep sep null null or |null glb.c glb.h Note 9
Const-Volatile, locally
Volatile owned

A-35

A Reference Tables

Global Override Settings for
Settings: Specific Data Object: Results in Generated Files:
Where |Where
Storage Class Data Data | Def. Header |Data Data Dec.
Setting Def. |Dec. File | Owner File Def. Is |Dec. Is | Inclusion
Global, Const, D/C D/C data.c |D/C null data.c |See Note |Note 10
Const-Volatile, 10.
Volatile
Global, Const, D/C D/C data.c |D/C hdr.h data.c |hdr.h Note 11
Const-Volatile,
Volatile
Global, Const, auto |D/C null null hdr.h model.c |hdr.h Note 11
Const-Volatile,
Volatile
Global, Const, src D/C null null hdr.h src.c hdr.h Note 11
Const-Volatile,
Volatile
Global, Const, sep D/C null null hdr.h glb.c hdr.h Note 11
Const-Volatile,
Volatile
Global, Const, D/C auto |null External |null External (model.h |Note 1
Const-Volatile, owner user--
Volatile supplied
file
Global, Const, D/C src null External |null External |src.c Note 8
Const-Volatile, owner user--
Volatile supplied
file
Global, Const, D/C sep null External |null External |glb.h Note 9
Const-Volatile, owner user--
Volatile supplied
file
Global, Const, D/C D/C null External |header.h|External |hdr.h Note 11
Const-Volatile, owner user--
Volatile supplied
file

A-36

Data Placement Rules and Effects

Global Override Settings for
Settings: Specific Data Object: Results in Generated Files:
Where |Where
Storage Class Data Data | Def. Header |Data Data Dec.
Setting Def. |Dec. File | Owner File Def. Is |Dec. Is | Inclusion
Global, Const, D/C D/C null External | header.h|External | hdr.h Note 11
Const-Volatile, owner user--
Volatile supplied
file
mpt Custom Storage Class: Exported Data:
ExportTo-File auto |auto |null null null model.c |[model.h |Notel
ExportTo-File src auto |null null null src.c model.h |Note 1
ExportTo-File sep auto |null null null glb.c model.h |Note 1
ExportTo-File auto |src null null null model.c |src.c Note 8
ExportTo-File src src null null null src.c src.c Note 8
ExportTo-File sep src null null null glb.c src.c Note 8
ExportTo-File auto sep null null null model.c |glb.h Note 9
ExportTo-File src sep null null null src.c glb.h Note 9
ExportTo-File sep sep null null null glb.c glb.h Note 9
ExportTo-File D/C D/C data.c |null null data.c |See Note |Note 10
10.

ExportTo-File D/C D/C data.c |null hdr.h model.c |hdr.h Note 11
ExportTo-File auto |D/C null null hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C null null hdr.h glb.c hdr.h Note 11
Simulink Custom Storage Class: Default, Const, ConstVolatile, Volatile:
Default, Const, |auto auto |N/A N/A N/A model.c |model.h |[Note 1
Const-Volatile,
Volatile
Default, Const, |[src auto |N/A N/A N/A src.c model.h |Note 1
Const-Volatile,
Volatile
Default, Const, |[sep auto |N/A N/A N/A glb.c model.h |Note 1
Const-Volatile,
Volatile

A-37

A Reference Tables

Global Override Settings for
Settings: Specific Data Object: Results in Generated Files:
Where |(Where

Storage Class Data Data | Def. Header |Data Data Dec.
Setting Def. |Dec. File | Owner File Def. Is |Dec. Is | Inclusion
Default, Const, |auto |src N/A N/A N/A model.c |src.c Note 8
Const-Volatile,
Volatile
Default, Const, |src src N/A N/A N/A src.c src.c Note 8
Const-Volatile,
Volatile
Default, Const, |[sep src N/A N/A N/A glb.c src.c Note 8
Const-Volatile,
Volatile
Default, Const, |auto |sep N/A N/A N/A model.c |glb.h Note 9
Const-Volatile,
Volatile
Default, Const, |src sep N/A N/A N/A src.c glb.h Note 9
Const-Volatile,
Volatile
Default, Const, |[sep sep N/A N/A N/A glb.c glb.h Note 9
Const-Volatile,
Volatile
Simulink Custom Storage Class: Exported Data:
ExportTo-File auto |auto |[N/A N/A null model.c |model.h |[Notel
ExportTo-File src auto |N/A N/A null src.c model.h |Note 1
ExportTo-File sep auto |N/A N/A null glb.c model.h |Note 1
ExportTo-File auto |src N/A N/A null model.c |src.c Note 8
ExportTo-File src src N/A N/A null src.c src.c Note 8
ExportTo-File sep src N/A N/A null glb.c src.c Note 8
ExportTo-File auto |sep N/A N/A null model.c |glb.h Note 9
ExportTo-File src sep N/A N/A null src.c glb.h Note 9
ExportTo-File sep sep N/A N/A null glb.c glb.h Note 9
ExportTo-File auto |D/C N/A N/A hdr.h model.c |hdr.h Note 11
ExportTo-File src D/C N/A N/A hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C N/A N/A hdr.h glb.c hdr.h Note 11

Data Placement Rules and Effects

Notes
In the previous table:

¢ A Declaration Inclusion Approach is a file in which the header file that
contains the data declarations is included.

¢ D/C stands for don’t care.

® Dec stands for declaration.

¢ Def stands for definition.

® gbl stands for global.

® hdr stands for header.

® N/A stands for not applicable.
¢ null stands for field is blank.

* sep stands for separate.

Note 1: model.h is included directly in all source files.

Note 2: model private.h is included directly in all source files.

Note 3: extern is included in model_private.h, which is in source.c.
Note 4: header.h is included in model_private.h, which is in source.c.
Note 5: model.h is included directly in all source files that use #define.

Note 6: header.h is included in model.h, which is in source files that use
#define.

Note 7: model.h is included in all source. c files.

Note 8: extern is inlined in source files where data is used.

Note 9: global.h is included in model.h, which is in all source files.

Note 10: When you specify a definition filename for a data object, no header

file is generated for that data object. The code generator declares the data
object according to the data placement priorities.

A-39

A Reference Tables

A-40

Note 11: header.h is included in model. h, which is in all source files.

Note 12: Signal: Either not defined because it is expression folded, or local
data, or defined in a structure in model.c, all depending on model’s code
generation settings. Parameter: Either inlined in the code, or defined in
model data.c.

Note 13: Signal: In a structure that is defined in model.c. Parameter: In a
structure that is defined in model_data.c.

A

additional options
adding custom comments 4-4
delimiter for all #includes 4-2
introduction 4-1

Alias A-28

attributes 3-4

Bitfield (Custom) A-25
Build button 2-7

C

changing identifier names 3-22
changing organization of generated file 2-2
classes 3-4
Code generation options A-22
code template 2-2
code_c_ template.cgt 2-2
code_h_ template.cgt 2-2
Code-to-model 2-7
comments
adding custom 4-4
adding global 4-6
Complexity A-21
Const (Custom) A-25
ConstVolatile (Custom) A-26
creating a data dictionary 3-5
custom comments 4-4
Custom comments (MPT objects only) A-2
Custom comments function A-2
custom template 2-3

D

daexplr command 3-9
Data access A-27
Data declaration A-7

Data declaration filename A-7
Data definition A-6
Data definition filename A-6
data dictionary 3-3
introduction 3-3
See also data objects
data object wizard 3-6
data objects
adding missing 3-6
naming rules
changing all #defines 3-26
changing all parameter names 3-25
changing all signal names 3-25
properties A-20
setting property values 3-9
wizard 3-6
data placement
introduction 5-2
rules for A-34
settings 5-2
data template 2-3
Data type property A-21
data types
creating 3-28
data_c_template.cgt 2-2
data_h_template.cgt 2-2
dataobjectwizard 3-7
declaring versus defining 1-3
Default (Custom) storage class A-23
Define (Custom) A-26
#define naming A-2
#defines
changing all 3-26
defining all objects in separate file 1-15
defining one object in its own file 1-17
Definition file A-24
Definition File priority 5-9
Description A-28
Dialog boxes
Configuration Parameters 1-7

Index-1

Index

Model Explorer 3-9 ImportFromFile (Custom) A-27
Dimensions A-21 #include
Direct A-27 specifying delimiter 4-2 A-8
DocBlock 4-6 inserting comment into generated file 1-23
inserting custom comments 4-4
E inserting global comments 4-6
ert_code_template. cgt 2-2
example file process.tlc 2-2 L
ExportToFile (Custom) A-26 Launch report automatically 2-7
external data dictionary
importing data objects from 3-18 M
M-functions
F #define naming 3-26
Frame based A-22 parameter naming 3-25
signal naming 3-25
G Maximum property A-22
MemConst A-23
Generate code only 2-7 MemConstVolatile A-23
generate code versus build 2-7 Memory section A-23
Generated Source Files 2-7 MemVolatile A-23
Get function A-27 Minimum property A-22
GetSet (Custom) A-27 Model Explorer
Global (Custom) storage class A-23 parameter and signal properties A-20
global comments Module name A-8
using DocBlock 4-6 Module naming A-8
using Simulink annotation 4-8 MPF
using sorted notes 4-10 basic tutorial 1-9
using Stateflow note 4-9 general operations and specific overrides 1-6
Global priority 5-7 introduction 1-2
settings 1-7
H when use 1-5

Header file A-24 mpt (module packaging tool) data object 3-5

Header file (*.h) template A-5
Header File priority 5-9 N

naming rules
| applying globally 3-22
changing all #defines 3-26

Ignore custom storage classes A-2 changing all parameter names 3-25

Index-2

Index

changing all signal names 3-25

o

Owner A-24
ownership
effects of settings 5-10
explanation 5-10
Ownership priority 5-9

P

package 3-4
Parameter class 3-4
parameter names
changing all 3-25
Parameter naming A-4
Parameter tune level A-9
Persistence level A-25
Pointer A-27
preexisting template 2-5
priority and usage 5-3
Definition File priority 5-9
Global priority 5-7
Header File priority 5-9
introduction 5-3
Ownership priority 5-9
Read-Write priority 5-5
See also interdependent settings
property values
definition 3-3
descriptions A-20
setting 3-9

Read-Write priority 5-5
Real-Time Workshop Report 1-15
rtwdemo_mpf.mdl 1-9

S

Sample based A-22
Sample mode A-22
Sample time A-21
Set function A-27
Signal class 3-4
Signal display level A-9
signal names
changing all 3-25
Signal naming A-4
Simulink annotation 4-8
Simulink data object descriptions A-2
sorted notes 4-10
Source file (*.c) template A-5
Stateflow note 4-9
Storage class A-22
Struct (Custom) A-27
Struct name A-25
symbols for templates
alphabetical list A-13

T

templates
creating new 2-8
editing 2-8

example with generated file 2-10
introduction 2-2

rules for creating or modifying A-17

selecting preexisting 2-5
symbols A-13

tutorial
changing identifier names 1-18

changing organization of generated file 1-21

creating a data dictionary 1-9

defining all objects in separate file 1-15
defining one object in its own file 1-17

inserting comment 1-23

Index-3

Index

U Volatile (Custom) A-25
Units A-21
User data type 3-28 W

User object type A-20 wizard
data object 3-6
\"4

Value A-21

Index-4

	toc
	Getting Started
	What Is MPF?
	When Do I Need to Use MPF?
	MPF General Operations and Specific Overrides
	MPF Settings
	Basic Tutorial
	Creating a Data Dictionary for a Model
	Using Data Object Wizard
	Inspect the Data Dictionary
	Generate and Inspect Code

	Defining All Global Data Objects in a Separate File
	Defining a Specific Global Data Object in Its Own File
	Changing Names of Identifiers
	Changing the Organization of a Generated File
	Inserting a Comment into Generated Files

	Selecting the Desired MPF Procedure

	Selecting and Defining Templates
	Overview of Templates
	Selecting Preexisting Templates
	Modifying Template Options
	Generating Code and Inspecting Files

	Defining Templates
	Tips
	Procedure
	Comparison of a Template and Its Generated File
	Template and Generated File

	Managing the Data Dictionary
	Overview of the Data Dictionary
	Creating Simulink and mpt Data Objects
	Overview
	Creating Simulink Data Objects with Data Object Wizard
	Creating Simulink Data Objects
	Setting Property Values for Simulink Data Objects
	Generating and Inspecting Code

	Creating mpt Data Objects with Data Object Wizard
	Comparing Simulink and mpt Data Objects
	Signal and Parameter Properties
	Configuration Parameters
	Generated Code

	Creating Data Objects Based on an External Data Dictionary
	Manually Creating Objects to Represent External Data
	Automatically Creating Objects to Represent External Data

	Saving and Loading Data Objects
	Applying Naming Rules to Identifiers Globally
	Overview
	Specifying Simulink Data Object Naming Rules
	Defining Rules That Change All Signal Names
	Defining Rules That Change All Parameter Names
	Defining Rules That Change All #defines

	Creating User Data Types
	Overview
	Registering User Data Types Using sl_customization.m
	Example User Data Type Customization Using sl_customization.m
	Example 1: sl_customization.m for User Data Type Customizations

	Selecting User Data Types for Signals and Parameters
	Preparing User Data Types and an Example Model
	Selecting User Data Types for Simulink Signals
	Selecting User Data Types for Simulink Parameters

	Registering mpt User Object Types
	Introduction
	Registering mpt User Object Types Using sl_customization.m
	Example mpt User Object Type Customization Using sl_customizatio
	Example 2: sl_customization.m for mpt Object Type Customizations

	Replacing Built-In Data Type Names in Generated Code
	Replacing Built-In Data Type Names
	Example 3: Generated Code with real_T Built-In Data Type
	Example 4: Generated Code with FLOAT64 Replacement Data Type
	Data Type Replacement Limitations

	Customizing Data Object Wizard User Packages
	Introduction
	Registering Data Object Wizard User Packages Using sl_customizat
	Example Data Object Wizard User Package Customization Using sl_c
	Example 5: sl_customization.m for DOW User Package Customization

	Customizing with Additional Options
	Ensuring Delimiter Is Specified for All #Includes
	Adding Custom Comments
	Adding Global Comments
	Introduction
	Using a Simulink DocBlock to Add a Comment
	Using a Simulink Annotation to Add a Comment
	Using a Stateflow Note to Add a Comment
	Using Sorted Notes to Add Comments

	Selecting Persistence Level for Signals and Parameters

	Managing File Placement of Data Definitions and Declarations
	Overview of Data Placement
	Priority and Usage
	Overview
	Read-Write Priority
	The Generated Files
	Settings for Read-Write Priority

	Global Priority
	Definition File, Header File, and Ownership Priorities

	Ownership Settings
	Memory Section Settings
	Data Placement Rules
	Example Settings
	Introduction
	Read-Write Example
	Ownership Example
	Header File Example
	Definition File Example

	Reference Tables
	MPF Panes on the Configuration Parameters Dialog Box
	MPF Template Symbols and Rules
	Introduction
	Template Symbol Groups
	Template Symbols
	Rules for Modifying or Creating a Template

	mpt Parameter and Signal Properties
	Data Placement Rules and Effects
	Effects of Ownership Settings
	Example Settings and Resulting Generated Files
	Data Placement Rules
	Notes

	Index

	tables
	MPF Settings
	Generated Files and Templates That Organize Them
	How the Template Affects Code Generation
	Naming Rules and Alias Override (Global Change of Force Lower Ca
	MPF Elements on Configuration Parameters Panes
	Parameter and Signal Property Values
	Some Examples of the Effect of Property Value Changes on Generat

